
EVOLUTIONARY DYNAMICS OF COLLECTIVE ACTION

PROBLEMS

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Mathematics

by

Matthew Isaiah Jones

DARTMOUTH COLLEGE

Hanover, New Hampshire

May 2022

Examining Committee:

Feng Fu, Chair

Scott Pauls

Dan Rockmore

Nicholas Christakis

F. Jon Kull, Ph.D.
Dean of the Guarini School of Graduate and Advanced Studies





Abstract

In the study of a single rational individual, it is often straightforward to design a

framework of rules and rewards to encourage a particular outcome that maximizes

the individual’s welfare. When it comes to groups of individuals, on the other hand,

this is not guaranteed. Incentives for individuals do not always align with an optimal

outcome for society as a whole, and it is misguided to treat a group as a single entity

that thinks and behaves like its constituent members. This thesis uses mathematical

tools to study aspects of collective action problems in three contexts: the distributed

graph coloring problem, polarization and voting, and fake news in social networks.

Many scenarios require group members to specialize or differentiate themselves

from those around them to maximize group effectiveness. In such situations, reaching

a state of maximum global effectiveness may require individuals to make short-term

sacrifices for the greater good when the group becomes “gridlocked.” We use the

mathematical concept of a graph coloring problem as a proxy for such coordination

problems, which allows us to draw new conclusions and parallels with other problems

that require consensus instead of specialization.

One of the classic group decision-making problems is the question of leadership

through voting. The outcome of an election is determined by the properties of the

underlying electorate, and we use a spatial model of voting to examine polarization

and the relationship between rising voter extremism and extremism in the political

elite class.
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One of the commonly-cited drivers of rising polarization is the recent explosion

in misinformation driven by online social media. We examine how fake news spreads

through a social network, test the effectiveness of relying on citizen fact-checkers, and

measure the effect social network structure has on our fact-checking efforts.

This work demonstrates the utility of using agent-based models when studying

social dilemmas and we hope that these techniques will continue to be applied to

critical problems of the modern era including public health, climate change, and

democracy.
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Chapter 1

Introduction

Section 1.1

Collective Action Problems

It began with a cow. At a livestock show in England in the early 1900s, 800 or so

people, many with little or no experience around cows, placed bets on the weight

of an ox. After examining all the votes, Sir Francis Galton made the remarkable

discovery that the median guess was off by only 0.8% [123]! Galton recognized the

importance of examining the ability of large groups to organize, coordinate, and

make rational decisions, writing “In these democratic days, any investigation into the

trustworthiness and peculiarities of popular judgments is of interest.”

Since then, a tremendous amount of effort has gone into studying such “collec-

tive intelligence,” and numerous examples of a group being wiser than the sum of its

part have been found in all areas of life (see [178] for a survey). In “The Wisdom of

Crowds,” James Surowiecki identified three types of problems faced by groups: cog-

nition, coordination, and cooperation [284]. In cognition problems, the group tries

to answer a question like “How much does that cow weigh?” or “Who would make

the best president?” or “Which of these news stories is real and which is fake?” This
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1.1 Collective Action Problems Introduction

requires compiling the thoughts and intuitions of individual group members into a

coherent whole. Coordination problems require groups to determine how to work to-

gether to solve a problem like selecting individual labor specializations to increase the

productivity of the economy or neighboring radio stations selecting different broad-

cast frequencies to minimize the amount of radio interference. Finally, cooperation

problems require individuals in a group to put aside their self-interest and contribute

to some common good. Cooperation problems are not specifically addressed in this

work, but methods for fostering cooperation in a population are highly sought after

and well-studied [73, 94, 118, 119, 175, 176, 213, 249]. Surowiecki identified collective

intelligence in all walks of life, from game shows and sports betting to internet search

engines and intelligence agencies.

However, group decision-making can have serious drawbacks. It has been well

documented that behavior that is optimal for the individual is not always optimal

for the group [142,219]. This makes coordination and cooperation problems difficult

because actions that are incentivized on the individual level are often harmful to

the group’s success. Pollution and over-population are two examples that Hardin

identified as self-interested behavior that is detrimental to the group as a whole in one

of the landmark papers introducing this “Tragedy of the Commons” [141]. Cognition

problems also have unique complications in the group setting. There are statistical

and psychological effects that can derail the wisdom of the crowds as individuals

abandon their correct personal beliefs in favor of the incorrect beliefs of those around

them [26,177].

Making decisions as a group does have advantages, though. One critical idea in

collective action is the notion of decentralization, where any central decision-makers

are removed and the group is left to organize itself effectively with no outside di-

rection. Decentralization has been studied in fields ranging from economics [302]

2



1.1 Collective Action Problems Introduction

and cryptocurrency [201] to control engineering [262] and the organization of intel-

ligence agencies [138], and while decentralization offers many benefits depending on

context, it can also make coordination difficult. This happens even when solving

problems that are trivial for a central decision-maker with complete information and

authority [44, 299]. Despite these difficulties, in certain areas, groups seem remark-

ably well-adapted to decentralized coordination. Famously, Adam Smith’s “Invisible

Hand” guided workers to specialize and coordinate with others in a way that benefited

the group as well as the individual without any sort of outside perspective or top-

down instruction [275]. Since then, much work has gone into the ability of markets to

self-organize into effective specialized units that all complement each other [33,104].

Malone et al. [183] identified four key questions to keep in mind when examining

collective intelligence:

• Who is performing the task?

• Why are they doing it?

• What is being accomplished?

• How is it being done?

The focus of this thesis is the “why” and the “how.” Why do individuals behave

the way they do? What are the incentives driving them to act, and how will changing

those incentives affect their behavior? And how do the many small choices of indi-

viduals manifest themselves as behavior of the entire group? What are the systems

that turn actions into trends, and how can these systems be manipulated to impact

the decision-making abilities of the entire group? The “who” and “what” are much

more context dependent and not the focus of this work, but we will see models of

voters electing officials in an increasingly polarized environment and news consumers

deciding between real and fake news.

3



1.2 Basic Mathematical Frameworks and Concepts Introduction

This work is fundamentally applied, meaning the math is almost entirely moti-

vated by and focused on real-world scenarios and questions. However, every attempt

to study the world using math requires a conversion from reality to abstract math-

ematical structures. Such models appear in many disciplines, including physics [20],

biology [136], psychology [1], economics [49], and finance [182]. In some cases, the

mathematical models are so ingrained in the field that experts in the field make no

distinction between model and reality; the model is uncontested as a complete and

accurate representation of the situation. However, this is often not the case (particu-

larly in the social sciences), and models are understood to be approximations designed

to take into account one or two important factors while ignoring the rest in hopes of

deriving a novel result that can be one piece among many in our understanding of

the system in question.

This thesis develops several models of collective action and then uses diverse math-

ematical tools to drawn meaningful conclusions about the systems in question. I begin

by introducing the necessary mathematical paradigms: game theory, evolutionary dy-

namics, network theory, and graph colorings.

Section 1.2

Basic Mathematical Frameworks and Concepts

1.2.1. Game Theory

Modern game theory is usually said to have begun with John von Neumann. In

1928, he published a paper that proved the Minimax Theorem [304] for two-player

zero-sum games with perfect information, and 16 years later, he wrote a book with

Oskar Morganstern [206] which greatly expanded their previous work and laid the

foundation for the field.

Although originally applied to economics, game theory has found applications in
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1.2 Mathematical Frameworks Introduction

all fields of science. Any scenario where agents interact can be modeled as a game.

We typically evaluate these games analytically, but there is also empirical work which

has exposed interesting behaviors and irrationalities in the way humans behave [222].

The foundation of game theory is the payoff matrix, which contains information

about the benefits and costs of choosing specific strategies, depending on the actions

of one’s opponent. In a two-player game where each player has two strategies, the

payoffs can be placed in the matrix as follows:

Player 2

C D

Player 1
A (a, b) (c, d)

B (e, f) (g, h)

Table 1.1: A payoff matrix for a two-player asymmetric game. The ordered pairs
represent the payoffs for Player 1 and Player 2, respectively. For example, if Player
1 chooses B and Player 2 chooses C, Player 1 gets a payoff of e and Player 2 gets
payoff f .

Of course, this can be generalized to have any number of strategies (by adding

rows and/or columns) and any number of players (by using an n-dimensional lattice),

but in this thesis, we only need to consider two-player games.

There are many classes of games. The most famous by far is the Prisoner’s

Dilemma [18, 94], a symmetric game with two choices for each player, to cooperate

(C) or defect (D).

Player 2

C D

Player 1
C (R,R) (S, T )

D (T, S) (P, P )

Table 1.2: The payoff matrix for the Prisoner’s Dilemma. The four payoffs follow the
relationship T > R > P > S and 2R > S + T .

The Prisoner’s Dilemma has a dominant strategy, D. Regardless of Player 2’s

5



1.2 Mathematical Frameworks Introduction

strategy, it is better for Player 1 to play D (see Table 1.2). It is not difficult to see

that this results in both players choosing D, even though both players choosing C

would increase all payoffs equally and give the maximum payoff for the group as a

whole. Many classical games like the Prisoner’s Dilemma focus on two players at-

tempting to get the better of each other; in the Prisoner’s Dilemma, both players

would like to defect while their opponent cooperates, thus reaping rewards and avoid-

ing punishments. A great body of work is focused on discovering conditions where

cooperation can survive or even out-compete defection [94, 213], including games on

networks [62,216] and iterated games [18].

In contrast to the Prisoner’s Dilemma, coordination games are a well-studied class

of games with no dominant strategies in which all players receive the most benefit

when they work together [273]. The optimal behavior for all players can usually

be determined and agreed upon if all players can meet, exchange information, and

strategize beforehand, but we typically require players to choose strategy simultane-

ously with no prior communication. In such games, the difficulty comes not from

attempting to take advantage of one’s opponent, but predicting what strategy one’s

partner will play before choosing one’s own strategy [212, 299]. Coordination games

can result in non-optimal outcomes for the group similar to the Prisoner’s Dilemma,

but instead of a failure to cooperate, now there is a failure to coordinate. However,

there can still be a “defecting” component, in which one’s opponent can unilaterally

choose a strategy with lower maximum payoff but also less risk [107].

For the purposes of this thesis, collective action games fall into two broad cat-

egories: games where individuals coordinate to pick the same strategies (referred

to as coordination games) [34, 156, 187], and games where individuals coordinate to

pick different strategies (referred to as anti-coordination games) [46, 52, 53, 185, 205].

Symmetric coordination games can usually be resolved if the players are allowed to

6



1.2 Mathematical Frameworks Introduction

communicate, but asymmetries in anti-coordination games can make cooperation dif-

ficult and highly dependent on network structure [46].

In general, there are substantial qualitative differences between coordination and

anti-coordination games. In a coordination game, it is relatively simple to assign

every individual the same strategy, reaching a maximum payoff for the entire group.

However, if three individuals play an anti-coordination game, then two of them must

choose the same strategy and thus not get the maximum payoff possible. In Chapter

3, we will see that these problems can be dual problems under very specific conditions,

but in general, these two games give very different dynamics.

Of course, a rational individual in any of these scenarios may decide that the best

course of action is to play a mixture of strategies with different probabilities, either

to be less predictable to her opponent or to take advantage of different choices her

opponent may make. These are called mixed strategies, as opposed to pure strategies

where an individual chooses a single strategy to play with probability 1.

A classical way to evaluate these games is with the Nash equilibrium. A Nash

equilibrium is a profile of strategies, one for each player, so that no single individual

can improve his expected payoff by changing to a different strategy. A wealth of

research has gone into studying Nash equlibria since John Nash first proved that at

least one equilibrium must always exist [203, 204]. Perhaps the most famous result

is Wilson’s Oddness Theorem, which states that in almost all finite games, there are

an odd number of Nash equilibria [311]. The Prisoner’s Dilemma (Table 1.2) has a

single Nash equilibrium, (D,D). In many coordination games, there are three Nash

equilibria: two with pure strategies and one with mixed strategies.

1.2.2. Evolutionary Dynamics

Often, we are interested in observing how a population evolves. In the simple case of

an infinite, well-mixed population, the population can be effectively modeled with or-

7



1.2 Mathematical Frameworks Introduction

dinary differential equations that give a closed-form solution to the change in strategy

distribution over time. We assign each of the i strategies an integer value between 1

and i and utilize a vector x where xi is the fraction of the population playing strategy

i. The population’s change is governed by the replicator equation

ẋi = xi (fi(x)− φ(x)) (1.1)

where fi(x) is the fitness of every individual playing strategy i, and φ(x) =
∑

i xifi(x)

is the average fitness of the population [153, 212, 293]. The replicator equation is

inspired by the Lotka-Volterra equations which modeled predator-prey systems [179,

291,301].

Keeping with this population dynamics approach, evolutionarily stable strategies

[276] are closely related to Nash equilibria and reflect similar ideas, but from the

perspective of competition between strategies instead of between individuals. An

evolutionarily stable strategy is a strategy that is secure against invasion by mutants

playing a different strategy.

The replicator equation is an excellent tool for studying infinite populations, but

other methods are needed to handle the subtleties of finite systems. A class of models

called birth-death processes are the standard tool for modeling population change in

this thesis [215,287,294]. These processes take many forms, but in general, individuals

have some fitness (often a function of the payoff from playing games) which determines

the likelihood of being chosen to reproduce after a random individual is removed

from the population. Just like the replicator equation in infinite populations, this

causes strategies with high fitness to grow and those with low fitness to head toward

extinction. The specific modeling choices made in an update rule can have a profound

impact on the system dynamics, and analytic results can be either straightforward or

impossible to obtain [217,317].
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1.2 Mathematical Frameworks Introduction

Evolutionary game theory, the use of game theory to determine how systems

change over time, requires us to make many assumptions when modeling real-world

populations. Our models frequently have features that do not match what is really

happening, but can be explained to be good approximations of reality by shifting

perspective. For example, individuals may change strategy if they see others playing

strategies that have more success in the current state of the system. Alternatively, we

may trace how a reproducing population changes over the course of many generations

by simulating deaths and births over a long period of time. Birth-death models cover

both of these processes.

Many of these models make the tenuous assumption that population size is fixed.

However, by shifting perspective, we can view our fixed population as showing the

frequency of each type of behavior instead of showing the true number of individuals

in the population. We also typically assume that the population is made up of

individuals that all have the same payoffs, fitness functions, etc. This makes the

model tractable, and the hope is that any variation among the population will be

insignificant when using average values for all individuals.

Our goal when developing models is to find the middle ground that is complex

enough to learn something new and interesting while also being simple enough to

understand and analyze. We will see an example of a birth-death process that meets

both criteria in Chapter 5.

1.2.3. Networks

The assumption that a population is well-mixed, i.e. that all pairs of individuals

are equally likely to interact, allows for very clean analytic work, but is clearly false

in a wide range of scenarios where networks create a more restrictive interaction

architecture. Social networks (including but not limited to networks arising from

online social media) have a profound on impact on how we function as a society
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[32, 46,64,74,77,78,85,97,131,132,167,194,248,265,287,289,313].

From a mathematical perspective, a network (also referred to as a graph) is a set

V of vertices and a set E of edges, which are pairs (sometimes ordered and sometimes

accompanied by weights) of vertices. (For an introduction to directed and weighted

networks and their implications, see [209]). In a social network, the vertices represent

individuals and the edges represent some connection between people. Friendship,

acquaintanceship, familial relations, and physical proximity are all common ways of

connecting two individuals in a network, and two vertices that are connected by an

edge are said to be adjacent and a vertex’s degree is the number of connected edges.

Figure 1.1: A small network to demonstrate different methods of network represen-
tation, with five vertices and six edges.

One way of describing a network mathematically is just to list all the elements in

V and E. For example, in the network in Figure 1.1, we have the following sets:

V = {1, 2, 3, 4, 5}

10
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E = {(1, 2), (1, 3), (2, 4), (3, 4), (3, 5), (4, 5)}

This method of listing all the edges as pairs is known as an edge list, and while

it has the advantage of being directly tied to the definition of a network, there are

other network representations that are more appropriate for particular applications.

A more pragmatic way of representing this network is to consider each individual

separately and list their neighbors. This is called an adjacency list [270], and the

adjacency list for the same small network is below.

1 2 3
2 1 4
3 1 4 5
4 2 3 5
5 3 4

Because it lists the neighbors of each individual, the adjacency list is very useful for

simulations and agent-based models. However, there is another method of network

representation that is extremely useful for the mathematical analysis of networks,

called the adjacency matrix [209]. In an unweighted network, we say that the i, jth

entry of A is given by

Aij =


1 there is an edge from j to i

0 otherwise

(1.2)

In our small example, the adjacency matrix is
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A =



0 1 1 0 0

1 0 0 1 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 0


(1.3)

Notice that because our particular network is undirected, the matrix is symmetric.

Representing the network as a matrix allows us to use all the tools of linear algebra

to study the network. In particular, the spectrum of the adjacency matrix (and other

related matrices) contains an abundance of information about the properties of the

network [41,75,109,199,244].

Broadly, the goal of network science is to show that the structure of a network has

some impact on the behavior of the system. To make such claims, it can be useful to

be able to create large families of networks that have a given property. In Chapter 5,

we describe several common network models, how they are created, and what useful

properties they have.

After creating networks with desirable properties that “look real” in some sense,

we still have the question of how to use them to draw conclusions about the system we

are interested in. A natural question to ask about a given network is which vertices

are most important. This obviously depends on the system we are modeling as well

as the notion of importance, and the various methods of determining importance

are known as centrality measures. Each centrality measure gives a different measure

of importance and may be relevant in a different scenario. The simplest centrality

measure is just degree, which determines a vertex’s importance by the number of

neighbors the vertex has. Eigenvector centrality [41] and Google Pagerank [50, 127]

are both defined recursively, meaning a vertex has a high centrality if its neighbors
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also have high centrality. Other centralities are defined more combinatorially. The

closeness centrality [72] measures how close a vertex is to all the other vertices in

the network and betweenness centrality [30] measures how important a vertex is in

passing messages around the network.

In addition to determining static properties of the network, we may also wish

to model how network structure affects dynamic systems. This may be as simple

as determining how much material can flow across a transportation network like

travellers moving from one city to another by rail [114].

However, the most versatile models that can be implemented on networks are

game theoretic. and use the ideas presented in 1.2.2. In these spatial games, each

vertex is an individual in a population, and the edges represent connections between

the individuals whose interactions are modeled by games [8,119,130,216,233,248,258,

265, 266]. In the broadest possible sense, each individual chooses some strategy, and

pairs of individuals connected by edges play the game. The resulting payoff is used

to change the strategy of one or more individuals who copy the strategy of successful

neighbors, and this process is repeated to see how the population’s strategy choices

change over time. These models can be studied analytically [168, 215, 216, 292], with

computer simulations [47,53], or with human subjects [52,250].

1.2.4. Graph Colorings

Networks were first studied by mathematicians in the context of graph theory, which

began, as many interesting mathematical things do, with Leonhard Euler. In 1735,

he wrote a paper about the “geometry of position” of seven bridges and two islands

in a river that would inspire generations of mathematicians to come [7, 105]. Since

then, graph theory has proved to be a very fruitful branch of mathematics, with

many interesting results on topics including planar graphs [171], cut size to separate

vertices [191], matching problems [180], and graph coloring.
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A proper graph coloring is a labeling of each vertex with a color so that no two

adjacent vertices have the same color. For example, in a bipartite network [54, 103,

135,226,278], the vertices can be divided into two groups, where every edge connects

vertices of different groups. If each of these groups is assigned a different color, then

neighbors will always have different colors.

The study of graph colorings began over a century ago, inspired by maps where

adjacent regions were always colored with different colors. The most famous result

about graph colorings is easily the Four Color Theorem, which states that every map

can be colored with four colors so that no region is the same color as any of its neigh-

bors. After years of traditional proofs being proposed and subsequently debunked, the

Four Color Theorem became the first major theorem to be successfully proven with

computer assistance [14]. However, there are many other interesting results about

graph colorings, including results about computing the chromatic number, which is

the smallest number of colors needed to color a graph [55], and the chromatic poly-

nomial, which determines how many ways a graph can be colored [36].

Strictly speaking, the graphs studied by pure mathematicians and the networks

encountered in the real world are the same objects, collections of vertices and edges,

and the terms are used interchangeably in this thesis. In practice, however, real-life

networks tend to be much larger and messier than the clean graphs studied by math-

ematicians. Graph theory and network science also differ in the types of questions

asked and how to answer them. Graph theorists tend to prove theorems in complete

generality with the full rigor of mathematics, while network science tends to be more

scenario-dependent, attempting to answer a specific question about a specific situa-

tion playing out on a specific type of network. Of course, this is not to say that the

two are easily separated; many results from graph theory can be extremely useful in

network science and vice versa. Chapters 2 and 3 use graph colorings as an analog for
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studying group coordination problems on networks, a question that would normally

fall under the classification of network science.

In contrast to proper graph colorings, we define a uniform coloring as a labelling

of the vertices so that every individual selects the same color. Mathematically, such

colorings are trivial and uninteresting. However, they can be useful when studying

coordination games, as we will see below.

Section 1.3

Societally Important Collective Action Problems

In Chapters 4 and 5, we examine two particular social coordination problems that

are particularly relevant today: polarization/voting and fake news.

1.3.1. Polarization and Voting

In [261], Sen makes a strong argument that political needs, specifically democratic

representation, must be satisfied before economic needs like poverty, unhappiness,

and inequality can be satisfied. If we assume this premise holds, the basic building

blocks of democracy, voting and elections, are of the utmost importance. There are

a range of methods for holding elections, each with their pros and cons. We do not

offer a comparative analysis of election systems here, but for an overview of the voting

systems used around the world, see [211].

As a note, in most of this work, we consider political candidates to be rational,

vote-seeking individuals who are able to change position to maximize votes. We

assume candidates will move through the ideological space according to adaptive

dynamics to maximize their vote share [152, 312]. However, we could also consider

candidates who are ideologically motivated and will not change position to gain more

votes [169].
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The work in Chapter 4 is in the spirit of this quote from Davis, Hinich and

Ordeshook, “The fundamental process of politics is the aggregation of citizens’ pref-

erences into a collective - a social - choice” [87]. We consider voting as a collective

action problem where the entire population must decide on a single leader that will

best serve the needs of the electorate. This can also be considered a collective action

problem from the perspective of a political party. Party officials may believe that one

candidate can best represent them in a general election, but another candidate may

decide to challenge the party favorite in a primary election for selfish reasons.

This is tangentially related to work studying a general version of elections called

social welfare functions, which attempt to consider individual value judgements and

measure the total amount of value to society for each possible choice [35]. However,

Arrow’s Impossibility Theorem has shown us that there is no possible social welfare

function that satisfies a few sensible axioms [17]. As a result, this work does not

attempt to reinvent or even critique the most prevalent of voting systems, called

plurality or first-past-the-post voting, as all social welfare functions have deficien-

cies. Instead, we will study how the properties of a population impact the types

of politicians that win public office when using plurality voting as our method of

group decision-making. Of course, this does not mean that the exact system of vot-

ing is irrelevant [252,259]. We will also ignore the effects of spatial sorting [184] and

gerrymandering [279].

Spatial Models of Voting. Our main tool for studying voting and polarization

is the spatial model of voting. Spatial models were first introduced by Hotelling

in 1929 [155], applied to political science by Downs in 1957 [95], and solidified by

Davis, Hinich, and Ordeshook in the late 60s [87]. The essence of spatial models is

to represent political beliefs as points in Rn. This embedding into a metric space

allows us to convert what was previously a vague and poorly-defined sense of political
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orientation into a clean mathematical space.

The impact of these spatial models has been immense. The NOMINATE and

DW-NOMINATE voting scores by Poole and Rosenthal are two related methods to

determine the position of a member of Congress in n-dimensional political space

using nothing but their roll call votes [237, 239–241]. Remarkably, the NOMINATE

and DW-NOMINATE algorithms needs no information about the content of the bills

and instead can determine a liberal/conservative score simply by comparing the votes

of all members of Congress. These “NOMINATE scores” have been instrumental in

studying the history of Congress as well as evaluating its current state. In fact,

according to Robert Franzese, this work has “revolutionized the manner in which

political scientists measure and think about ideology. One can say perfectly correctly,

and without any hpyerbole: the modern study of the U.S. Congress would be simply

unthinkable without NOMINATE legislative-roll-call-voting scores” [116].

A key consideration when building a spatial model is how many dimensions to

use. Obviously, lower-dimensional models are easier to work with, but at the cost of

fidelity. On the other hand, higher-dimensional models may be taking into account

more factors than the low-dimensional models, but they are much more unwieldy

from an analytic perspective [86, 149]. Interestingly, in many spatial models, much

of modern political action is effectively one-dimensional [239]. The one-dimensional

political axis ranging from liberal to conservative is a simple and effective tool for

“quick and dirty” analysis but there is evidence that additional dimensions are needed

for a more complete understanding of how individuals vote [144]. In this work, we

stick with the one-dimensional model that accounts for an ever-growing proportion

of voting behavior [239] and lends itself nicely to mathematical analysis.

A key result from spatial models of voting is the Median Voter Theorem [79, 81,

146]. There are many different statements of the theorem, but they all are variations
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on the theme of “the median voter chooses the winner, so candidates will compete

for the median voter.” Hotelling observed something like this [155], although not

in the context of politics, but Black was the first one to apply it to voting in the

context of single-peaked preference profiles [38]. The Median Voter Theorem is often

invoked as a moderating force in politics, forcing politicians to maintain even-keeled

positions despite most voters holding more extreme views [43]. In Chapter 4, we

consider variations of the spatial model in which the Median Voter Theorem does not

hold.

1.3.2. Fake News

Putting all this effort into the study of elections and voting only makes sense if people

know who or what they are voting for. Thomas Jefferson said that one of the foun-

dational requirements for a lasting democratic government was “general education to

enable every man to judge for himself what will secure or endanger his freedom. [157]”

Agreeing with Jefferson, there is a general consensus among political scientists that

a well-informed voting population is a prerequisite to a well-functioning government.

However, it has always been a struggle to keep voters at an appropriate level of

education; a lack of factual knowledge in the American electorate has been well doc-

umented (see Ref [151] for some examples). While Jefferson was concerned primarily

with literacy and the formation of a public education system, there is another com-

plicating factor that is threatening voters’ ability to make well-informed decisions. A

voter cannot reasonably be expected to determine what will “secure or endager his

freedom” when being exposed to a deluge of misinformation, particularly on social

media.

Malicious and deliberately false posts, commonly called “fake news”, burst into

public consciousness in the mid 2010s, around the time of the 2016 U.S. presidential

election and the U.K. Brexit vote. In a social media environment that encourages
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sharing and reposting flashy headlines instead of researching and developing a nuanced

understanding of a topic, social media platforms seem to facilitate the spread of

fake news [89, 172, 263, 271, 305]. Social influence, following, and unfollowing can

create polarized and segregated structure in social media like Twitter [307]. These

insular communities, colloquially known as “echo chambers” [196, 298], can serve

as hotbeds for fake news to fester and create conditions for confirmation bias and

selection bias [239] and thus can facilitate the spread of misinformation [89]. During

the COVID-19 pandemic, misinformation has severely impacted our efforts to control

the pandemic (“misinfodemics”) [59,192,229].

Related to the polarization studied in Chapter 4, in the context of modern politics,

partisanship has come to dominate the political sphere and stall political consensus,

both amongst the political elite and the general population [11, 65–68]. This, in

turn, has led to a rise in politically motivated falsehoods being spread online. It has

become a major research concern to effectively understand circumstances that will

lead to consensus of opinion and others that will lead to divergence of opinion and a

weakening of information transfer [13, 117,121,154,202,306,314].

While it is hard to measure the exact factors that contribute to the spread of fake

news, it may be that something about the structure of social media (e.g. the repost-

ing/retweeting network) is allowing their spread. To attempt to quantify the effect

network structure has on the proliferation of fake news, we develop a mathematical

model of fake news sharing and test it on a variety of social networks. There is an

established tradition of using spatial game theory to study problems of coordination

and collective action, particularly the Prisoner’s Dilemma, and the structure of the

population playing games has been found to drive the behavior of the system, encour-

aging or discouraging good behavior depending on the network’s properties [216,292].

The evolution of the system can also exhibit interesting spatial phenomenon that is

19



1.3 Societally Important Collective Action Problems Introduction

not present in the well-mixed case [214]. We use a similar strategy to study the spread

of fake news through a social network.

In Chapter 5, we view fake news as another group coordination problem. As

individuals, both Democrats and Republicans are quite good at identifying which

news sources are accurate and which are not [101, 230], but misinformation is re-

markably resilient in large social networks. It is possible that the population breaks

into two groups through echo chambers, with echo chambers carrying on a different

narrative than the population at large [298]. Inspired by work studying public goods

games [145,267,268], we will examine how positive and negative feedback can be use-

ful tools to stop the spread of fake news and help the population reach an accurate

consensus opinion.
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Chapter 2

Random Choices Facilitate

Solutions to Collective Network

Coloring Problems by Artificial

Agents

Section 2.1

Introduction

There is a rich history of playing games to model interactions in the presence of

some social structure [46, 52, 53, 74, 167, 187, 248, 265, 287]. For example, studying

how this structure impacts player behavior has been a particularly useful area for

those interested in fostering certain kinds of behavior like cooperation by allowing

punishment [73] or partner choice [119], among others. To simulate this spatial struc-

ture, we can treat the population as a network where each node is an individual, and

individuals play games if they are connected by an edge [130,216,233,258,266].

On such a network, many coordination games can be cast as network coloring
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problems [162]. On the surface, graph coloring is an abstract question about different

ways to label vertices. However, if we think of vertices as individuals (which we refer

to as artificial agents in this work) and the color choice representing the strategy of

that individual, a graph coloring can have game theoretic meaning [162,167,186].

In the Radio game (Table 2.1), two radio station owners must each choose to

broadcast on one of two frequencies. If they choose different frequencies, both radio

stations have good sound quality, but if they choose the same frequency, they interfere

with each other and no one can listen to either station.

Player 2

A B

Player 1
A (0, 0) (a, a)

B (a, a) (0, 0)

Table 2.1: The payoff matrix for the radio game. If both players broadcast on the
same frequency, they get no benefit. Instead, they both get a benefit a when they
anti-coordinate, so one individual plays A and one plays B.

When playing the Radio Game (Table 2.1) on a network, a valid coloring of the

network where adjacent vertices have different colors represents a social optimum;

there are no longer any neighbor pairs playing the same strategy and getting decreased

payoffs.

2.1.1. Coordination Problems as Distributed Graph Coloring Problems

Graph colorings have been applied to theoretical problems, inluding register allocation

in computer science [70] and network clustering problems [140], but there are also

many real-world social systems that can be studied through graph colorings. Deciding

on a time table for various classes with shared classrooms [88,256], assignment of radio

frequencies [224, 316], and contrarians or “hipsters” who make choices specifically to

distinguish with those around them [21,163] are a few examples of anti-coordination

games that manifest naturally as network coloring problems. When the nodes of a
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network are properly colored, all the individuals are playing an optimal strategy. In

this sense, the network coloring problem, if assigned with a proper payoff structure for

the coloring outcome, can be considered broadly as collective action problem [15,170].

Just like proper colorings can be used to study anti-coordination games, uniform

colorings, in which each individual chooses the same color, can be a useful model of the

coordination game. The voter model is a classic example of individuals in a networked

population playing a coordination game using myopic update rules in an attempt to

reach consensus with those around them using only limited local information [174,

277,300].

This connection between real-life anti-coordination games and graph colorings al-

lows us to bring all the techniques for finding graph colorings to bear on real scenar-

ios [37, 158, 310]. Unfortunately, the graph coloring problem is NP-hard [124]. Many

difficult mathematical problems cannot be solved by a simple, direct approach, but it

can sometimes help to apply a small degree of randomness to any algorithms searching

the solution space. This approach has been used to all sorts of problems, including

the Traveling Salesman Problem [42] and the graph coloring problem [158] with which

we are concerned in Chapters 2 and 3. It is noteworthy that, more broadly, effects

of noises on phase transitions and collective outcomes have been studied in diverse

contexts, including consensus in opinion formation and evolution [235, 282], order-

ing in Kawasaki dynamics [165], cooperation in evolutionary games [231, 290], and

convergence in combinatorial optimization problems [60], to name a few.

Attempts to solve the network coloring problem typically use information about

the entire network to make decisions about the colors of nodes. This is a good idea,

since having all the information simultaneously leads to better informed decisions. For

example, in [158], Johnson, Aragon, McGeoch, & Schevon use a notion of temperature

to gradually reduce stochastic behavior. As the system “cools,” random behavior
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decreases so the system can settle into the global solution after fully exploring the

state space in the early stages. This requires some central information unit that

instructs each node on color choice, but if we are using the network as a model of

a population in which edges represent interactions, such a central “brain” may not

exist. Instead, individuals may be forced to make decisions based on nothing except

the color of their neighbors at any given moment. Thus, solving the distributed

network coloring problem, in which each node decides its color with only the local

information about its neighbors, is more difficult, as we lose the ability to make

decisions based on the state of the entire network. This introduces new complications

to the classic problems, and stochastic behavior is often needed to successfully find

an n-coloring of the graph [160].

In recent years, there has been a growing interest in studying distributed coloring

problems. One line of work involves deterministic algorithms that require more colors

than necessary for the network [71, 110]; the additional available colors make the

problem much more tractable. There has also been work involving experiments with

human subjects who have been given control of the color of a single node, and are

asked to choose colors to eliminate conflicts with their neighbors. In [167], Kearns,

Suri, and Montfort observed that individuals would frequently choose colors that

temporarily increased the total number of color conflict, but ultimately lead to a

global coloring. Following this, in [264], Shirado and Christakis found that by adding

a small number of bots (namely, artificial agents as opposed to humans) to the system

who periodically made random changes “decreased both the number of conflicts and

the duration of unresolvable conflicts” when finding network colorings. However,

they also found that the bots could be detrimental if not properly tuned with the

appropriate levels of randomness. Along this line, a recent related modeling work has

incorporated reinforcement learning algorithms (q-bots) into agent-based simulations
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of the distributed coloring problem [246]. Despite these developments, there still is

a lack of analytical insights into the optimal level of random behavior needed when

solving network coloring problems.

To provide further analytical insights into the role of behavioral randomness in

finding solutions to the distributed coloring problem, Chapters 2 and 3 focus on “my-

opic artificial agents” attempting to solve network coloring problems using decision

update rules that are only based on local information but allow random choices at

various stages of their heuristic reasonings. While most previous work used three-

colorable graphs [167, 264], we assume agents are situated on networks that can be

colored with only two colors, often called bipartite networks [135]. This specific net-

work structure simplifies the number of possible colorings (exactly two for a connected

network) and offers analytical insights that would be formidable to obtain otherwise.

For an omniscient observer that can view the entire graph and dictate colors to ver-

tices, finding one of these 2-colorings is a trivial matter. However, things become

more difficult when there is no central decision-maker, and instead each vertex rep-

resents an individual who must choose her own color with no information except the

colors of her neighbors. The results reported below come from an entire population

of artificial agents (in the fashion of simulated bots as in Ref. [264]), some of whom

are behaving deterministically and some stochastically. Our work in Chapter 2 sheds

some light on the appropriate levels of randomness to optimize solving the distributed

coloring problem.

This study was published in [160].
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Section 2.2

Results

2.2.1. Random Network Construction

As we will see, different network topologies will be easier or harder to color. Even with

global information, finding network colorings becomes exponentially more difficult as

the number of nodes increases [124]. On the other hand, as average degree increases,

individuals will have more neighbors and therefore be able to make more informed

decisions when choosing a color. Throughout this chapter, we simulate artificial

agents that attempt to find 2-colorings of random bipartite networks. The exact

structure of these networks will vary, as will the decision update rules agents use to

solve the network colorings.

We construct a random network with n nodes and expected degree k by first

assigning each node to group A or group B with probability 1
2
. Then, we add an edge

between any two nodes in different groups with probability 2k
n

. Thus, the resulting

network is guaranteed to have a 2-coloring by assigning every node in group A one

color and every node in group B the other color. However, there may be different

numbers of nodes for each color, as the sizes of groups A and B are binomially

distributed in our bipartite network model.

2.2.2. Decision Update Rules for Agents

In this chapter, we consider multiple decision update rules to account for a variety

of artificial agents’ behavior, each with their own strengths and weaknesses. In the

following, an acceptable local coloring at a node is the choice of color such that none

of the node’s neighbors have that color (no color conflicts with neighbors).

We first consider a basic greedy update rule of agents:
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I: Basic greedy update rule

Step 1: Check if the current color is already an acceptable local coloring. If yes, keep

the current color for this update step. If not, advance to Step 2.

Step 2: Check if the other color would make an acceptable local coloring. If yes, change

to that color. If not, advance to Step 3.

Step 3: Choose whichever color will minimize the number of color conflicts. If both

colors will create the same number of color conflicts with neighbors, randomly

choose one color.

As the goal of each agent is to reduce and ultimately eliminate color conflicts with

their neighbors, the greedy update rule can be seen as the rational strategy for an

agent playing every single round of the coloring game, and is therefore implemented

as the “default” strategy in our population. We incorporate random behavior in

various decision stages in the following modified update rules based on the basic

greedy update rule above. Notably, these simple yet natural update rules based on

intuitive heuristics, combined with the bipartite network structure which simplifies

the possible colorings, enable analytical insights that are unobtainable in the more

complicated systems put forward in other work [246].

II: Randomness-first update rule

Step 1: With probability p, choose a color uniformly at random. With probability 1−p,

advance to Step 2.

Step 2: Check if the current color is already an acceptable local coloring. If yes, keep

the current color for this update step. If not, advance to Step 3.

Step 3: Check if the other color would make an acceptable local coloring. If yes, change

to that color. If not, advance to Step 4.
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Step 4: Choose whichever color will minimize the number of color conflicts. If both

colors will create the same number of color conflicts with neighbors, randomly

choose one color.

III: Memory-0 update rule

Step 1: Check if the current color is already an acceptable local coloring. If yes, keep

the current color for this update step. If not, advance to Step 2.

Step 2: Check if the other color would make an acceptable local coloring. If yes, change

to that color. If not, advance to Step 3.

Step 3: With probability p, choose a color uniformly at random. With probability 1−p,

advance to Step 4.

Step 4: Choose whichever color will minimize the number of color conflicts. If both

colors will create the same number of color conflicts with neighbors, randomly

choose one color.

IV: Memory-N update rule

Step 1: Check if the current color is already an acceptable local coloring. If yes, keep

the current color for this update step. If not, advance to Step 2.

Step 2: Check if the other color would make an acceptable local coloring. If yes, change

to that color. If not, advance to Step 3.

Step 3: If no neighbors have changed colors in prior N cycles, with probability p, choose

a color uniformly at random, and with probability 1− p, advance to Step 4.

If any neighbors have changed colors in prior N cycles, advance to Step 4.
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Step 4: Choose whichever color will minimize the number of color conflicts. If both

colors will create the same number of color conflicts with neighbors, randomly

choose one color.

2.2.3. Initialization of Agent Behavior

Each artificial agent, located at a node in the network, behaves according to one of the

aforementioned update rules. Specifically, we consider scenarios where the population

may be using two different update rules. A certain fraction ρr of randomly-selected

agents adopt one of the randomness-first, memory-0, or memory-N update rules where

the propensity of random behavior is p (as defined in the update rules), and the rest

of agents use the basic greedy update rule.

The color choice of agents is updated in a random sequential manner [287]. Agents

update one at a time, and the order in which agents update is random. Each agent

begins with a randomly chosen color.

2.2.4. Difficulty Metrics

We use three different metrics to quantify how successful a given decision update rule

is in solving coloring problems by artificial agents: the number of unsolved networks,

the number of update cycles, and the number of player updates.

The number of unsolved networks metric is simply the probability that a given

network will reach a coloring given certain initial conditions including update order,

update rules for each agent, and initial coloring.

The number of update cycles measures the number of times each agent goes

through the update process, and the number of updated agents measures the to-

tal number of color changes. Roughly, the number of update cycles measures how

long it will take the system to reach a coloring in real time, and the number of up-

dated agents measures how involved the process is for all agents involved. Because
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some combinations of networks and initial conditions may never end up with a com-

plete coloring solution, these metrics have the possibility to be infinite in these cases.

Therefore, the average of difficulty metrics across model parameter combinations may

be heavily skewed by some of the unsolved network coloring cases. Nevertheless, these

difficulty metrics provide a practical means to compare the efficacy of resolving color

conflicts across simulated scenarios and can help reveal interesting results to some

extent.

2.2.5. Bowties and Gridlock

To see how local minima arise, we show a small network in which each agent occupying

a network node uses the greedy update rule in Fig. 2.1a. The dashed edges are

“bowties,” small subgraphs consisting of a central edge whose end nodes both have

at least three edges. Motif structures like this can lead to gridlock and the failure

of the greedy update rule, as demonstrated in Fig. 2.1b. If the central agents are

playing the same color, they can become locked in by their other neighbors, and as a

consequence, the greedy update rule becomes trapped at this local minimum, unable

to explore the entire space and find a global minimum of color conflicts. Without

random behavior, the network will never reach a global coloring once this happens.

The smallest possible network structure that can become gridlocked is the six-node

bowtie, as shown in Fig. 2.1b.

This simple case demonstrated in Fig. 2.1b can yield an interesting insight. Con-

sider the case where there is no random behavior and each agent is playing the greedy

update rule. There are 6! · 26 random initial conditions for the update order and ini-

tial colors. Using exhaustive search to work out each case, we find that the simple

bowtie results in gridlock with probability 29
120

. In each case, either gridlock or a global

coloring is always reached after two update cycles.

Of course, brute-force computation quickly becomes untenable for large network
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Figure 2.1: Overcoming local minima is often needed to solve collective
action problems. (a) shows a small network that did not find a valid coloring using
only greedy behavior. The four dashed edges represent bowties, subgraphs where the
greedy update rule can become gridlocked. The red edge shows a color conflict that
cannot be resolved by greedy behavior. In (b), we see how the interior nodes of a
bowtie are both forced to keep the same color by the exterior nodes, creating gridlock.

sizes, but we can still develop helpful intuition from this simple example (Fig. 2.1b).

With the randomness-first update rule, if at least one agent has random behavior

(occurs with probability 1 − (1 − ρr)
6), the network will eventually find a global

coloring. However, in the memory-N update rule, the peripheral nodes already have

a locally acceptable color, and will not change even if they have the potential for

random behavior. One of the middle two nodes must have random behavior to find

a coloring, which happens with probability 1 − (1 − ρr)
2, a much less likely event

than in the randomness-first update rule. Thus, the gridlock probabilities for the

randomness-first and memory-N update rules respectively are approximately

Prand-first(Gridlock) =
29

120
(1− ρr)6 (2.1)

Pmemory-N(Gridlock) =
29

120
(1− ρr)2 (2.2)

We see excellent agreement between these equations and simulations in Fig. 2.2.

We note that these probabilities are less accurate when p is large, because individuals
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could behave randomly before the system reaches gridlock, disrupting the earlier

computation for 29
120

which assumed no random behavior takes place in the first two

update cycles.

Figure 2.2: The probability of gridlock in the six-node bowtie for varying
the fraction of agents with random behavior, ρr. We see that the simulations
(using p = 0.5) match well with the analytic results in Eqs. 2.1 and 2.2. Here we
compare the randomness-first rule with the memory-0 rule. Simulation results are
averaged over 1, 000 independent runs.

Similarly, we see that the memory-N update rules require larger ρr than the

randomness-first rule to reach the same efficacy of resolving color conflicts. When

using the former update rule, only agents with a color conflict are allowed to make

random choices, unlike the latter randomness-first update rule. Because random

behavior is limited to individuals with a color conflict, large ρr values are less likely
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to result in too much randomness when most agents are already in a local coloring

without conflicts and hence will not behave randomly in any given time step. We shall

see this difference between randomness-first and memory-N update rules manifest

itself in simulations on larger networks in the following section.

2.2.6. Monte Carlo Agent-Based Simulations

Having defined the model parameters for the problem, we now can ask a basic ques-

tion: What is the optimal amount of randomness to have in the system so as to reach

a coloring solution? It turns out that the answer varies, depending on the specific

update rule used, the size of the network, and the average degree of the underlying

network. Typically, we will consider large and small networks with 50 and 500 nodes,

and vary with average network degree values of 2 and 20, respectively. Figure 2.3

shows how noisy agents using different update rules succeed at reducing the total

number of conflicts in different situations. Notice that no update rule alone can beat

the greedy update rule in the short term, but eventually the randomness-based up-

date rules begin under-performing the greedy rule only to eventually surpass it and

completely eliminate color conflicts.

There are two sources of difficulty for coloring networks using any randomness-

based update rule. If there is not enough randomness, the decision update rule is

unable to break away from the local minimum found by agents using the greedy

update rule. If there is too much randomness, the probability that at least one agent

will be picking the wrong color every turn is so high that the network will not find

a coloring in a reasonable number of time steps. Methods like simulated annealing

avoid this problem by cooling the system and decreasing the amount of randomness

over time [158]. However, in a distributed system (where each agent is using only

local information to choose color) with no global information like temperature, we

are limited to very simple local update rules that simply cannot evolve over time.
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Figure 2.3: Plots of total conflicts vs time. Each curve is the average of 1, 000
simulations, and each run consists of 2, 000 update cycles. Observe that the x-axis
is log-scale, to show the short and long term behavior of each update rule. All
networks have average degree 2, and the other network properties are as follows: a)
n = 50, p = 0.1, ρr = 0.9 b) n = 50, p = 0.1, ρr = 0.5 c) n = 50, p = 0.6, ρr = 1 d)
n = 500, p = 0.6, ρr = 1

2.2.7. Randomness-first rule

For the randomness-first update rule, we ran simulations for 20 combination values

of ρr and p between 0 and 1. Networks that found a coloring within 10, 000 update

cycles by agents were considered solved, and those that did not find a coloring within

10, 000 cycles were considered unsolved. In Fig. 2.4, we show the results of these

simulations.

We see the difficulty of too much and too little randomness in Fig. 2.4. In all
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Figure 2.4: For the randomness-first update rule, simulation results of the
probability of not solving the network in 10, 000 time steps using four dif-
ferent types of networks as a function of the level of randomness p and the
fraction of agents with random behavior ρr. The bipartite network parameters
including the size N and the average degree k used for the underlying networks are
as follows: a) n = 50, k = 2 b) n = 50, k = 20 c) n = 500, k = 2, d) n = 500, k = 20.

four regions of the network parameter space (small/large size, low/high edge den-

sity) the probability of solving the network goes to zero because agents are always

making random decisions, even when the rest of the network has found a local color-

ing. When average degree is two, we also see unsolved networks when there is very

little randomness. Here, there are too few random agents to break out of the local

minimum.

These results demonstrate how the randomness-first update rule’s success varies
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depending on the properties of the network (Fig. 2.4). When average degree is high,

randomness is actually a hindrance; the fewer random actions there are, the bet-

ter. However, when average degree is low, a large fraction of the population using

the randomness-first update rule with a low p is best. Unfortunately, for large net-

works with small average degree, there seems to be no good p and ρr when using the

randomness-first rule.

Notice that in general, as network size goes up and/or average degree goes down,

there are more unsolved networks. This makes intuitive sense, as additional nodes

means more colors that need to be correct, and smaller average degree means the

nodes have less information and make poorer decisions.

2.2.8. Memory-N rules

We first study the memory-0 update rule that differs from the randomness-first rule

in that agents only take random actions if they are in conflict with at least one of

their neighbors. Thus, there are fewer needless random actions, and we would expect

this decision update rule to perform better where excess randomness is an issue. This

is partially confirmed by simulations in Fig. 2.5.

Generally, we see an improvement of performance over the randomness-first update

rule. The memory-0 rule does very well when ρr is close to one, even for large

networks with low average degree. However, it still struggles with excess randomness,

particularly when network size and average degree are large. A higher average degree

means that a single random color choice creates more color conflicts and therefore

makes it more difficult for the system to settle into a global coloring. However,

if we assume agents with a longer memory (i.e., N ≥ 1), this issue vanishes, as

demonstrated in Fig. 2.6.

This compelling evidence suggests that the memory-1 update rule is most effective

at resolving color conflicts as compared with the basic greedy update rule and the
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Figure 2.5: For the memory-0 update rule, simulation results of the proba-
bility of not solving the network in 10, 000 time steps using four different
types of networks as a function of the level of randomness p and the frac-
tion of agents with random behavior ρr. The bipartite network parameters
including the size N and the average degree k used for the underlying networks are
as follows: a) n = 50, k = 2 b) n = 50, k = 20 c) n = 500, k = 2, d) n = 500, k = 20.

memory-0 update rule (cf. Figs. 2.4, 2.6, and 2.5). If ρr is close to one, networks

are almost always able to find a global coloring, regardless of network size or average

degree. However, if for some reason only a rather small fraction of the agents are

allowed to use randomness-based update rules, the randomness-first update rule will

have more success, as seen in the simple bowtie example in Fig. 2.1b.

The memory-1 update rule is extremely effective in networks with high connec-

tivity. Similar effects of connectivity on graph colorablity, albeit using the Brélaz’s
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Figure 2.6: For the memory-1 update rule, simulation results of the proba-
bility of not solving the network in 10,000 time steps using four different
types of networks as a function of the level of randomness p and the frac-
tion of agents with random behavior ρr. The bipartite network parameters
including the size N and the average degree k used for the underlying networks are
as follows: a) n = 50, k = 2 b) n = 50, k = 20 c) n = 500, k = 2, d) n = 500, k = 20.

heuristic algorithm [48], have been observed in coloring small-world networks [285].

When average degree is k = 20, every individual’s local information encompasses

the color of a large number of neighbors, allowing individuals to make very informed

decisions. Additionally, individuals with a high number of edges are able to see a

lot of potential color changes. If the population is large and over-randomness is a

concern, this is lessened when individuals can see a wide range of neighbors, and will

not randomly change color if they see one of their many neighbors changing. Thus,

38



2.3 Discussion Random Behavior in the Network Coloring Problem

the system will be allowed to settle into the global solution, even when individuals

playing random update rules are likely to choose a random color.

Section 2.3

Discussion

The 2-coloring problem, while trivial on a global scale, represents new challenges when

solved by a population of agents that have only limited local information. When

an agent only sees a small fraction of the entire network, they can be led astray

into making myopic decisions that are non-optimal for the population at large. On

the other hand, agents making random decisions, however infrequently, can serve to

perturb a system that is stuck at a local minimum, thereby breaking up gridlock and

moving the population toward the desired global coordination.

Among others, an important insight stemming from this work is that the type

of decision update rule used by agents is at least as important as the amount of

random behavior. The randomness-first and memory-N update rules require different

conditions to be successful. This gives us two different update rules that are useful

in different settings, and should be thought of as complementary instead of one being

superior to the other. For example, in a scenario where all agents are able to use

a randomness-based update rule, a memory-N update rule can be used to great

success. However, if only a few agents in the population can be persuaded to take on

the personal risk of behaving randomly (or a small number of bots prescribed with

random behavior have been introduced into the population like [264]), a randomness-

first update rule with a low p will have a higher chance of success.
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Section 2.4

Limitations of the Study

The work presented in this chapter most closely relates to previous work involving

human subjects playing the coloring game with random bots [264]. While random

behavior was observed coming from human players [167], it is not clear if this behavior

was closer to the randomness-first or the memory-N update rule. The noisy bots

themselves in Ref. [264] played a randomness-first update rule, which may explain

how such a small fraction (ρr = 0.15) of random actors had such a profound impact

on the network coloring game. While the artificial agents in this work may not

fully capture sophisticated human behavior, they indeed encompass the essence of

random exploration ubiquitous in human decision-makings, as demonstrated in prior

observations of human decision choices in game theoretical interactions [296]. It is

thus promising for future work to leverage existing data such as in Ref [264] to further

validate and refine the stochastic decision update rules presented in this chapter.

Our work demonstrates that the solving of challenging distributed network col-

oring problems can be achieved by entirely using myopic artificial agents without

human subjects. We find that it is necessary to have enough randomness to ensure

that the system is able to find the global coloring, but without having so much ran-

dom behavior the system never settles down. That said, certain randomness-based

update rules can be particularly successful, depending on the underlying population

characteristics (see Table 2.2). In this regard, our findings as summarized in Table

2.2 can be used to inform future hybrid experiment design.

Of particular note, here we only consider the simplest possible 2-colorings of bi-

partite networks, which is surely an over-simplification of the more general coloring

problems. Introducing even one more color adds all sorts of complications. For exam-
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Population characteristics Optimal update rule

Small ρr Randomness-first update rule
Large ρr, small n Memory-0 update rule
Large ρr, large n Memory-N update rule, N ≥ 1

Table 2.2: Population characteristics determine the efficacy of each decision
update rule in solving collective network coloring problems. This table
summarizes how ρr, the proportion of agents with random behavior, and n, the size
of the population, can impact which stochastic update rule used by noisy agents will
work best together with the remaining greedy agents.

ple, the bowtie analysis completely falls apart, as the subgraphs to result in gridlock

in a 3-colorable network are significantly larger and more complex. Besides, this

study also only considers populations that play a mix of two decision update rules: a

fraction of the agents use greedy decision rule and the rest use randomness-based rule.

It is possible that other potential combinations, such as a mixed population of agents

using the randomness-first rule and the memory-N rule, could succeed in places where

neither update rule succeeds alone. Future work taking into account these extensions

will be of interest and improves our understanding of collective decision-makings in

the presence of noises [83,84], and more generally, machine behavior [247].

41



Chapter 3

The Dual Problems of

Coordination and

Anti-coordination on Random

Bipartite Graphs

Section 3.1

Introduction

The main result of this chapter is that the distributed coloring problem has an un-

expected property: in the context of bipartite graphs, finding a 2-coloring of the

graph, which models an anti-coordination game, is equivalent to getting all individ-

uals in the graph to choose the same color, which is a coordination game. Thus,

anti-coordination games and coordination games are dual problems, and a whole new

class of coordination games where everyone wants to opt for the same strategy can

also be modeled as a graph coloring problem. We show this novel result by defining

two Markov chains on the space of colored graphs, one where individuals are playing
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the anti-coordination game and one where individuals are playing the coordination

game, and showing that they are isomorphic.

3.1.1. Coordination Games

In Chapter 2, we presented the Radio game (Table 2.1) as one example of an anti-

coordination game. Here we introduce two of the most famous and well-studied

coordination games: the Stag Hunt and the Bach-Stravinsky game.

Player 2

S H

Player 1
S ( s

2
, s

2
) (0, h)

H (h, 0) (h
2
, h

2
)

Table 3.1: The payoff matrix for the Stag Hunt game, where a large payoff s is split
between both players if both choose S. Otherwise, a payoff of h is divided between
the players that choose H.

Table 3.1 gives the payoff matrix for the Stag Hunt [34, 272, 273]. In this game,

two hunters would like to work together to hunt a large stag (S) but each hunter can

decide to hunt hares (H) instead, which can be done alone. A hunter who tries to

hunt the stag alone fails and gets nothing. In this game, both players would prefer

to hunt the stag together, but choosing S runs the risk of getting a payoff of zero if

the other hunter chooses H. Therefore, it is sometimes called the “Assurance Game”

because both players would like some sort of assurance that the other will also choose

to hunt the stag before making their choice.

Table 3.2 shows the payoff matrix for the Bach-Stravinsky game (originally called

Battle of the Sexes [181, 221]) in which two players must decide between going to a

Bach (B) or a Stravinsky (S) concert. Player 1 prefers Bach and Player 2 prefers

Stravinsky, but they both would rather go to the same concert than listen to their

preferred composer. The difficulty here for Player 1 is in persuading Player 2 to

abandon their preference so that Player 1 gets a maximum payoff. Of course, the
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Player 2

B S

Player 1
B (a+ b, a) (0, 0)

S (0, 0) (a, a+ b)

Table 3.2: The payoff matrix for the Bach-Stravinsky game. Each player gets a benefit
a if they go to the same concert, and the player who goes to their preferred concert
gets an additional benefit b.

worse case scenario is when both individuals go to their less-preferred concerts, and

both get zero payoffs.

Unlike the Stag Hunt, the Bach-Stravinsky game has symmetric strategies, mean-

ing there is no “risky” and “safe” strategy. In this paper, we will consider a coordina-

tion game where each player maximizes payoff by choosing the same strategy as their

neighbors, and no player has any inherent preference for one strategy or the other.

This can be modeled with the payoff matrix in Table 3.2 with a = 0.

3.1.2. Markov Chains

Another tool that can be used to study social systems is the concept of a Markov

chain from probability theory [98, 122, 133]. Formally, a discrete time Markov chain

is a sequence of random variables Xn (each with the same state space Ω) whose

probability distribution only depends upon the realization of the previous random

variable Xn−1; i.e.

P (Xn = yn|X1 = y1, X2 = y2, . . . , Xn−1 = yn−1) = P (Xn = yn|Xn−1 = yn−1). (3.1)

Informally, a Markov chain is a system that evolves over time that is “memory-

less”, meaning only the present state is relevant for the next state of the system.

Because many natural processes are memoryless, Markov chains have proved useful
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for building models and analyzing systems in disciplines ranging from literature to

physics, computer science to DNA [76,143,303].

A process that depends on a finite number of previous states can be turned into a

Markov chain by expanding the state space to be ordered tuples of the previous states.

In this way, for any finite k, a sequence of random variables where Xn depends on

Xn−1, Xn−2, . . . Xn−k can still be modeled as a Markov chain by expanding the state

space to be a list of the last k values.

If the number of possible states is a finite integer m, then the transition matrix

P is the m ×m where Pij is the probability of moving from state i to state j. The

transition matrix contains all the information that makes up the Markov chain, and

just like the adjacency matrix of a network, it allows us to use all the tools of linear

algebra to study the chain. For an introduction, see [133].

However, in systems with a large number of states (including those in this thesis),

these transition matrices are simply too large. Enumerating all the states would take

a tremendous amount of time and it would take an enormous amount of computing

resources just to store such a large matrix. In such cases, simulations can be used to

get approximate results with much less computational effort.

This work extends our study of the distributed coloring problem from Chapter 2

and has been published in [159].

Section 3.2

Theoretical Results

3.2.1. A Natural Bijection for Update Rules for 2-colorings and Uniform

Colorings

In this chapter, the individuals located at each vertex will operate using a simple set of

update rules. These rules can incorporate random behavior, but the update decisions
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depend only on the color of an individual’s neighbors. Consider the relationship

between update rules for anti-coordination and coordination games. We will see that

any update rule for an individual playing an anti-coordination game can be adapted

to an update rule for playing a coordination game and vice versa. At its most basic,

an anti-coordination rule aims to minimize the number of neighbors with the same

color, and the goal of a coordination rule is to maximize the number of neighbors

with the same color. Therefore, we can turn an anti-coordination update rule into a

coordination update rule just by picking the opposite color every time.

Suppose we have an individual vertex with a neighbors playing color A and b

neighbors playing color B, like in Figure 3.1a. When we define an anti-coordination

rule where the central individual will select color A with probability p(a, b) and color

B with probability 1 − p(a, b), we can make the corresponding coordination rule as

follows: choose A with probability 1− p(a, b) and B with probability p(a, b).

Consider an update rule (anti-coordination or coordination) that has a function

p(a, b) that gives the probability of choosing color A. If we switch the colors of all

neighbors, the probability of choosing A is now p(b, a) because now b neighbors are

playing A and a neighbors are playing B. There is a natural restriction to impose

on the possible update rules. If we switch the color of every neighbor, moving from

Figure 3.1a to Figure 3.1b, the probabilities of the central vertex choosing color A,

p(a, b), and color B, 1 − p(a, b), should switch as well. This restriction gives us the

following complementary condition, by setting the probability of choosing A equal to

the probability of choosing B after switching all the neighbors’ colors:

p(a, b) = 1− p(b, a) (3.2)

For any anti-coordination update rule, a vertex with a A neighbors and b B

neighbors will choose A with some probability p(a, b). If we switch the colors of
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Figure 3.1: A simple case to demonstrate the bijection of update rules with two color
choices. Making an anti-coordination decision in (a) will have the same outcome
as making a coordination decision in (b), since all the colors of the neighbors have
changed to the other color. If an individual would have chosen blue in (a) to match
with as few neighbors as possible, that would correspond to choosing blue in (b),
where the goal is to match with as many neighbors as possible.
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all the neighbors, the vertex will choose A with probability p(b, a) = 1 − p(a, b),

but this is equal to the probability of a coordination player choosing A. Therefore,

an anti-coordination algorithm can be converted into its dual algorithm for a coor-

dination game by temporarily switching the colors of all the neighbors, using the

anti-coordination update rule, and switching the neighbors’ colors back. As an ex-

ample, an anti-coordination update rule on Figure 3.1a will have the same behavior

as a coordination update rule on Figure 3.1b.

The same process can be used to convert a coordination algorithm to an anti-

coordination algorithm.

To put the above individual choice function p(a, b) in context, it is worthwhile to

introduce a few intuitive anti-coordination update rules. The first update rule, called

randomness-first, involves making a random choice with probability r, and otherwise

with probability 1−r makes a color choice that minimizes color conflicts. This update

rule can be expressed as:

p(a, b) =


1− 1

2
r a < b

1
2

a = b

1
2
r b < a

(3.3)

Under the second update rule, called memory-0, individuals first attempt to choose

any color that eliminates all color conflicts. If that is not possible, the individual

chooses randomly with probability r and otherwise with probability 1− r chooses the

color minimizing conflicts with neighbors. In our terms, this algorithm is
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p(a, b) =



1 a = 0

1− 1
2
r 0 < a < b

1
2

a = b

1
2
r 0 < b < a

0 b = 0

(3.4)

The third main update rule, called memory-1, is like the memory-0 rule except

that the agent only makes a random choice if no neighbors have changed color in the

last round of updates. Since this is not a memory-less update rule, it does not have

a corresponding p(a, b) function, and the following proof would need to be slightly

modified, particularly by significantly enlarging the state space of the Markov chains

to include the last N colorings of the graph, to prove the equivalence for update rules

with finite memory. While we do not go over all the details of proving that a finite-

memory update rule also satisfies the isomorphism, we do show results of computer

simulations to demonstrate that the duality of coordination and anti-coordination

holds in Section 3.

This is only a small selection of all possible update rules. Any function that

satisfies Equation (3.2) and returns values between 0 and 1 could be an update rule,

although many would be very ineffective. The three update rules described above are

all intuitively reasonable and simple to express, which made them excellent candidates

for study in prior work on network graph coloring problems [160]. However, there

are other natural update rules that we do not explicitly describe here. For example,

an individual may wish to choose each color proportional to the number of neighbors

playing that color.

In what follows, we demonstrate that an anti-coordination update rule is exactly
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as effective at finding a 2-coloring as the corresponding coordination update rule is

at finding a uniform color for the whole bipartite network.

3.2.2. Two Markov Chains

For a connected, bipartite graph G of size N , let col(G) be the set of all possible

labelings of the graph G. Note that here we refer to all ways of labeling the vertices

of G with either color A or color B, not just 2-colorings in which no neighbors share

the same color.

The system will update as follows: the graph is initialized by randomly assigning

each vertex a color. An update order is created that describes the order in which the

labelled vertices will update their color. The update order is represented as a list of

the numbers 1 through N , which is just a permutation of N elements. The set of all

permutations of N elements, called the symmetric group on N elements, is denoted

SN . The vertices continually update their colors in this order, one at a time, until

the desired coloring (either a 2-coloring or uniform coloring) is found.

Now we can define our Markov chains. Let {Xi} be a Markov chain using an

anti-coordination update rule, and let {Yi} be the Markov chain using the associated

coordination update rule, as described above. The state space Ω of both chains is the

set of ordered triples (G∗, σ,m) where G∗ ∈ col(G), σ ∈ Sn, and m ∈ {1, 2, . . . , n}.

Unsurprisingly, G∗ represents the colors of the vertices of the graph at some time i. σ

is the order in which the vertices update, and m is the current position in the update

step.

The state space is quite large, but for each state, there are exactly two states to

which the Markov chains can move with non-zero probability, shown in Figure 3.2.

To begin, we initialize both Markov chains (anti-coordination and coordination)

by sampling from the uniform distribution Π over Ω, so each starting coloring is

equally likely.
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Figure 3.2: A demonstration of the possible transitions in both Markov chains. The
next vertex to update is marked by a gold ring. Transitioning from (a) to (b) is
minimizing matching with neighbors’ colors, and is more likely to appear in an anti-
coordination Markov chain, while transitioning from (a) to (c) is matching with as
many neighbors as possible, and more likely in the coordination Markov chain.
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Without loss of generality, let Xj = Yj = (G∗, σ,m). Here, σ(m) is the vertex

that is about to update. Let G∗A be the colored graph that is the same as G∗ except

possibly σ(m) which has color A, and G∗B the same but for color B. In each step of

the Markov chains, σ(m) selects one of two colors and the position in the update cycle

increases by one, resetting to 1 if necessary. The update order σ remains unchanged.

Thus, if σ(m) has a color A neighbors and b color B neighbors,

P (Xj+1 = (G∗A, σ,m mod(n) + 1)) = p(a, b) (3.5)

P (Xj+1 = (G∗B, σ,m mod(n) + 1)) = 1− p(a, b) = p(b, a) (3.6)

P (Yj+1 = (G∗A, σ,m mod(n) + 1)) = 1− p(a, b = p(b, a)) (3.7)

P (Yj+1 = (G∗B, σ,m mod(n) + 1)) = p(a, b) (3.8)

3.2.3. A Markov Chain Isomorphism

For bipartite graphs, we claim that these Markov chains {Xi} and {Yi} are isomorphic.

First, because G is a connected, bipartite graph, the vertices can be divided into two

groups. In a 2-coloring, all the vertices in the same group will be the same color, and

all vertices in different groups will be different colors. Let S be the set of vertices of

one of these groups. Because we are working with 2-colorings of bipartite graphs, we

can define a function φ : col(G) → col(G) by switching the color of every vertex in

S, and define ψS : Ω → Ω as the extension of φ in the natural way. We claim that

this is a Markov chain isomorphism between Xi and Yi. This requires proving two

conditions hold. First, ψS must be bijective. Second, ψS must commute with the

transition matrices of Xi and Yi, i.e. the probability of Xi moving from x to y is the
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same as Yi moving from ψS(x) to ψS(y). More formally, for all x, y ∈ Ω,

P (Xi+1 = y|Xi = x) = P (Yi+1 = ψS(y)|Yi = ψS(x)) (3.9)

If Equation (3.9) holds, the two Markov chains are equivalent in that after relabelling

the states in Ω (according to ψS), the Markov chains are identical.

3.2.4. Proof of isomorphism

That ψS is bijective is fairly obvious. For any colored graph G∗, because we are only

working with 2-colorings on bipartite graphs, φ(G∗) is well-defined, and only φ(G∗)

maps to G∗, so it is both one-to-one and onto, and therefore ψ is as well.

Now we will prove Equation (3.9). Since we are considering Markov chains moving

from x to y (or ψS(x) to ψS(y)), let x = (G∗, σ,m). Let a and b be the number of

color A and color B neighbors of σ(m) in G∗, respectively.

We begin with the conditional statement Xi = x = (G∗, σ,m). Equations (3.5)

and (3.6) give the only two possibles states of Xi+1 and their transition probabilities:

P

(
Xi+1 = (G∗A, σ,m mod(n) + 1)

)
= p(a, b) (3.10)

P

(
Xi+1 = (G∗B, σ,m mod(n) + 1)

)
= 1− p(a, b) (3.11)

Once again, G∗A and G∗B are the same as G∗ except σ(m) which has color A or B,

respectively.

Now we consider Yi+1 given that Yi = ψ(x) = ψ((G∗, σ,m)) = (φ(G∗), σ,m). σ(m)

is the next vertex to update, and either it is in the subset S or it is not. These two

cases must be handled separately.
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Figure 3.3: An example on a small bipartite graph showing that ψS commutes with
the transition matricies, when σ(m) ∈ S. Color A is blue and color B is red. The
top row shows the transition in the anti-coordination Markov chain, and the bottom
is the transition in the coordination Markov chain. In both chains, this particular
transition occurs with probability p(1, 2).
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Figure 3.4: An example showing that ψS commutes with the transition matricies
when σ(m) /∈ S. Color A is blue and color B is red. The top is the anti-coordination
Markov chain, and the bottom is the coordination Markov chain. This time, the
transition occurs with probability p(2, 1).

3.2.5. Case 1: σ(m) ∈ S

If σ(m) ∈ S, none of σ(m)’s neighbors are in S, so σ(m) still has a color A neighbors

and b color B neighbors. Because we are now in the coordination Markov chain {Yi},

σ(m) chooses its color according to equations (3.7) and (3.8).

With probability p(a, b), σ(m) chooses color B. Because σ(m) ∈ S, φ(G∗) be-

comes φ(G∗A) when σ(m) chooses B. Thus, Yi+1 = (φ(G∗A), σ,m mod(n) + 1) =

ψ(G∗A, σ,m mod(n) + 1).

With probability 1−p(a, b), σ(m) chooses colorA, and Yi+1 = (φ(G∗B), σ,m mod(n)+

1) = ψ(G∗B, σ,m mod(n) + 1).

Thus, when σ ∈ S, Equation (3.9) holds.
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3.2.6. Case 2: σ(m) /∈ S

If σ(m) /∈ S, then all of its neighbors are. So in φ(G∗), σ(m) has b color A neighbors

and a color B neighbors.

With probability 1−p(b, a) = p(a, b), σ(m) chooses colorA, and Yi+1 = (φ(G∗A), σ,m mod(n)+

1).

With probability p(b, a) = 1−p(a, b), σ(m) choosesB, and Yi+1 = (φ(G∗A), σ,m mod(n)+

1).

So Equation (3.9) holds when σ(m) /∈ S. Therefore, ψ is a Markov chain isomor-

phism.

3.2.7. Equivalence of the 2-coloring and uniform coloring problems

Now we are prepared to state and defend the main claim of this work: when using

local information, the anti-coordination and coordination problems are equivalent.

Any result regarding the efficacy of an update rule p(a, b) for an anti-coordination

game can also be applied to a coordination game, and vice versa.

Since the initial distribution Π is the uniform distribution and ψ is bijective,

ψ(Π) = Π and both Markov chains begin from the same distribution. Furthermore,

because ψ switches the color of the set S, for any state Xi that is a valid 2-coloring,

ψ(Xi) = Yi is a uniform coloring. For all times i, applying Equation (3.9) i times

tells us that moving the anti-coordination chain from a state X0 to state Xi happens

with the same probability as moving the coordination chain from Y0 = ψ(X0) to

Yi = ψ(Xi). Because Π is the uniform distribution, for all x ∈ Ω and for all times i:

P (Xi = x|X0 ∼ Π) = P (Yi = ψ(x)|Y0 ∼ ψ(Π) = Π) (3.12)

Critically, this says that the probability of solving the anti-coordination problem

in i steps is the same as solving the coordination problem in i steps, for all i. Ad-
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ditionally, the process is linked at each step, so the expected number of player color

changes will be the same, for example.

This result also holds for any update rules with finite memory. Any stochastic

process whose transition probabilities only depend on a finite number of previous

states can be reexpressed as a Markov chain by defining the new state space to be

lists of elements from the previous state space, and this works here with any update

rule that considers the last n update steps.

Section 3.3

Simulation Results

This result has been confirmed with a variety of simulation results. First, we take

a broad approach: We create a large number of different networks, and populating

each with individuals playing a particular anti-coordination update rule. Then we

repeatedly attempt to find a 2-coloring of the network, collecting data on probability

of finding a 2-coloring, the number of update cycles needed, and the number of players

updated. Then, using the same network with individuals playing the associated

coordination update rule, we repeatedly search for a uniform coloring, collecting data

on the same metrics. After repeating this on all the networks, we have a large data

collection that, if anti-coordination and coordination games are equivalent, should be

two samples of the same probability distribution.

And we see that this is the case using the two-sample Kolmogorov-Smirnov test

on data collected from 1,000 different networks. For all three metrics (probability of

solving the network, update cycles, and updated players), the K-S statistic is below

0.015 with a p-value greater than 0.999. This strongly suggests that the samples are

drawn from the same distribution and the two problems are equivalent.

We can also consider a closer examination of the moment-to-moment behavior of
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Figure 3.5: Plots showing the time evolution of the number of color conflicts using
three reasonable update rules. (a) is randomness-first, (b) is memory-0, and (c) is
memory-1. Crucially, the anti-coordination and coordination variants of the same
update rule have the same behavior in all three plots. Curves are the average of
1000 simulations for each update rule. For randomness-first, the random behavior
probability was 0.5. For memory-0 and memory-1, the random probability was 0.1.

each system by counting the number of color conflicts in the network at every time

step, averaged over multiple runs. A color conflict is an edge who ends have the

same color (in the case of an anti-coordination game) or different colors (in the case

of a coordination game). Previous work [160] dealt mainly with three update rules:

randomness-first, memory-0, and memory-1. In Figure 3.5, we see the result of many

simulations on the same graph, with these three different update rules. The x axis is

log scaled, to clearly show the behavior in the short and long term.

Although the proof given above doesn’t strictly apply to the memory-1 update

rule, it can be modified to work for any update rule that gives its agents finite memory

by enlarging the state space to ordered tuples of network colorings. In Figure 3.5c,

we see that finding uniform colorings and 2-colorings are equally difficult on random

bipartite graphs.

These simulations confirm that the behavior when searching for a 2-coloring is the

same as when searching for a uniform coloring, regardless of the specific update rule.
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Section 3.4

Discussion & Conclusion

Studying the collective behavior of individuals in a large group has long been an

important research area of statistical physics and relevant fields. The question of

“collective action,” the tendency for individuals in a group to forgo short-term selfish

behavior in favor of long-term group benefit, has been extensively discussed and

examined. Of particular interest is classifying the environmental factors that foster

cooperation within group, particularly in the case of a public goods game and the

Prisoner’s Dilemma [142]. There are a plethora of studies that use networks to model a

social structure on the group, and the exact topology of networks can have a profound

impact on the cooperation inside a group [8, 226, 232, 288]. Additionally, empirical

research uses human trials to examine how humans behave rationally (or irrationally)

when actually playing public goods games with others [222].

Our results add to the study of collective action by approximating public goods

games in that individuals sometimes need to make selfless actions (choosing colors

that increase color conflicts) with the long-term goal of increasing success for the

entire group (finding a 2-coloring or uniform coloring) [160]. Our present work shows

that these two fundamentally different games behave in the same way on random

bipartite networks.

Our finding is counter intuitive, but it is important to remember that it applies in

a relatively narrow range of scenarios. A bipartite structure is unlikely in most social

networks, which means anti-coordination and coordination are equivalent problems

only in the small selection of populations that happen to be bipartite with an ini-

tial coloring sampled uniformly from all possible colorings. However, these bipartite

networks do occur widely in real systems with two different types of individuals like
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media producers and consumers [54, 278] or in a sexual contact network (that only

considers heterosexual connections) [103]. More generally, there are also no parallels

for n-colorings for n > 2.
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Chapter 4

Polarization, Abstention, and the

Median Voter Theorem

Section 4.1

Introduction

When is it rational for two strategically-motivated candidates to deviate from the

ideological center in a general election? Spatial models of economic competition have

long served as a baseline model for political agendas and electoral outcomes [95,155].

In their simplest form, every voter’s political preference is captured along a one-

dimensional space, and each voter chooses the candidate (typically out of two) who is

most proximate to them in the one-dimensional ideological space. Accordingly, each

candidate rationally selects a point which maximizes their share of votes. The main

result is well-known, two competing and self-interested candidates are at equilibrium

when their political positions are equal to the opinion of the median voter. As anyone

with even the slightest interest in politics will know, there are many examples of

politicians in fully-functioning democracies that are not trying to appeal to a median

voter, but instead take increasingly outrageous positions to appeal to fringe voter
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groups. This chapter attempts to explain this departure from the Median Voter

Theorem by focusing on several factors that impact voting but are not considered in

the simplifying assumptions that give us the Median Voter Theorem.

4.1.1. Factors that Impact Voting Dynamics

A simple one-dimensional, two-candidate model of elections ignores many complexi-

ties which have been addressed individually by political scientists since the appearance

of the Median Voter Theorem. There may be more than two candidates, or a third

option may threaten to enter the race depending on the ideological alignment of the

two main candidates [223]; the ideological space that candidates are competing on

may be multi-dimensional [86, 149]; voters may have probabilistic rather than deter-

ministic voting rules, which can shift the point of candidate ideological convergence

from the median to the center [27,189]; candidates may not be purely concerned with

winning, and gain more utility from winning with a specific ideological position [169].

Furthermore, many scholars have found that the polarization of politicians and

other elites like political journalists, pundits, and party officials leads to the polar-

ization of voters, both in terms of their ideological views [96] and their affective

perceptions of the other party [25] and opposing political elites [252]. While these

mechanisms of top-down social influence are important to consider, voters do not

follow polarized elites unconditionally [198], and we expect that candidates also have

an incentive to follow voters as the original Median Voter Theorem states. In our

model we present a set of decision-making rules that could generate voter-driven elite

polarization, rather than elite-driven voter polarization or voter-driven political con-

vergence. Stated in another way, we show how polarization could emerge from elite

preferences for winning, rather than elite commitments to predetermined ideologies.

While voter-driven or elite-driven mechanisms may be sufficient to generate polariza-

tion, both are almost certainly at play in “the real world,” and there is substantial
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interplay between the two. Our modeling approach focuses on the voter-driven model,

and presents a parameter space of voter behaviors and distributions. We assess which

combinations of behaviors and distributions by themselves would be sufficient to gen-

erate polarization between strategically-minded candidates.

We focus on a set of three main complications that are present now in the United

States, but have not yet been examined together. First, we consider the influence

of ideologically motivated third-party candidates. While third-party voting has been

on the decline in the United States [150], voting for non-competitive third-party

candidates still occurs as an expression of cynicism or distrust with the the larger

political system [234], often at levels that sway the results of major elections [9]. Our

models will vary in terms of the intensity of third-party appeal to voters, but the

political positions of ideologically-motivated candidates will remain fixed at the far

ends of the spectrum in our primary model. This is primarily because our model aims

to consider centrifugal mechanisms that drive candidates away from the position of

the median voter. (Fixing third-party candidates also limits the dimensionality of the

parameter space in a way that makes interpretation of findings more straightforward.)

In practice, an ideologically motivated third-party candidate may appear between

masses of voters on the left and the right, which we suspect may be an increasingly

likely scenario in the United States if polarization increases or persists. (We briefly

explore the case of an ideologically-driven candidate at the political center in Section

3.2.1, and find that under certain conditions this may both prevent the polarization of

candidates or prevent their convergence to the center. Our main results and findings,

however, will focus on the case of extreme third-parties.)

Second, elections in the United States typically feature large numbers of eligible

voters who stay at home [115]. The reasons for voter abstention are multi-faceted, and

draw on a range of perspectives from across the social sciences (for a comprehensive

63



4.1 Introduction Polarization and the MVT

review, see [274]). Spatial models of voter choice, where the only voter-level attribute

considered is the ideological position of the voter, have considered abstention to be a

function of a voter’s proximity to the candidates [10, 87, 99, 147, 148, 220]. Empirical

analysis of voting behavior in United States presidential elections [4, 238, 315] and

United States Senate elections [236] support the notion that voters are not motivated

to take on the cost of voting when they do not find any candidate appealing, or

when they are indifferent between candidates. The idea that voters are more likely

to show up in response to a higher perceived material or cognitive payoff from a

more ideologically proximate candidate aligns with other cost-benefit based analyses

of voting behavior, which find that adverse weather conditions lower voter turnout

[129], while same-day voter registration decreases opportunity costs and increases

turnout [108]. We also expect that candidates will disproportionately utilize resources

to mobilize voters who are most ideologically proximate and likely to support them.

Modern political campaigns that feature repeated targeted attempts at voter contact

were found to increase voter turnout by up to 7-8 percentage points in targeted areas

during the 2012 United States presidential election [100]. Voter turnout also varies as

a function of individual characteristics such as sex, race, and age [12], as well as more

mutable socio-demographic factors such as income and wealth [200], education [139],

and health [40,58], all of which are conceivably correlated with the relative costs and

benefits of voting. Voter habit-forming and socialization [125] and social norms [16]

also determine the likelihood of voter turnout. We expect that net of these social

and psychological factors, the ideological positioning of candidates still shapes the

motives and abstention level of voters. Furthermore we expect that vote-optimizing

candidates will adjust their positions to reflect the ideological distribution of those

who are expected to vote, not the ideological distribution of the entire-voting eligible

population.
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The combined threats of voter abstention and ideologically extreme candidates

generates tension between winning over the center or appealing to the ‘base’ when

determining what candidates or platforms to field for a general election [3]. On

one hand extreme candidates might cede the center to the opponent (in line with

the assumptions of the Median Voter Theorem), and on the other hand extremist

voters may behave irrationally and stay at home rather than casting a vote for the

candidate who is closest to them ideologically. An additional concern is that extremist

candidates, while energizing their own base, may increase turnout among people who

are extremely opposed to their agenda as well [137].

The final mechanism we consider in our model is polarization, where our one-

dimensional population becomes more dispersed as voters become more extreme. Po-

larization has been examined extensively by political scientists [111], sociologists [23],

and economists [92], and its empirical scope and potential causes have been the focus

of impressive studies by information scientists [80] and computational social scien-

tists [22], but it’s implications for rational choice voting models and candidate com-

petition are rarely considered [134, 307]. While there is some debate about whether

the political divide in the United States is on the rise [23, 112], by many metrics po-

larization among American voters has increased over the last few decades [2,45,166],

and the ideological differences between political elites has also grown [240, 241, 280].

Many causes of polarization have been identified, including homophily [119, 190],

in-group identifiers [90,91,128], social media [29,173,283], and even media consump-

tion [61,245].

The median voter model can be seen as a “bottom-up” process that brings the

political preferences of rational candidates in line with the more centrist preferences

of the electorate. It is a model of anti-polarization [134], but its limitations have

become apparent in the current political climate.
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Given these three variables: voter tendencies towards third-party candidates, stay-

ing home, and polarized beliefs, we are primarily interested in whether specific com-

binations will motivate strategic candidates to pursue divergent ideological strategies.

Given the growing polarization in the U.S. electorate [309], it is important to con-

sider the conditions necessary for candidates to follow voters in their drift to extreme

positions in the short term. While the use of formal modeling cannot discern the fun-

damental causality of any specific example of contemporary polarization in the United

States or elsewhere, it can shed light on what combinations of voting behaviors could

incentivize the drift of candidates away from the center. In practice, we believe this

is a more complex phenomenon, likely explained by some combination of intersect-

ing political, cultural, economic, and technological factors. However, we believe that

reconciling this idea with one of the most straightforward, influential, and highly-

cited models of candidate behavior (the spatial choice model of Hotelling (1929) and

Downs (1957)) can be generative for future theoretical and empirical research on the

intersection of elections and polarization.

Our approach builds on more parsimonious two-candidate models of voter choice,

wherein we allow voters to either choose one of the two strategically-motivated main

candidates, ideologically motivated third-party candidates, or to stay home alto-

gether. We also consider the ideological distribution of the voter electorate as a

proxy for political polarization. Following earlier advances in the voter choice litera-

ture, our approach treats voting as a stochastic rather than deterministic process [82];

the odds of a voter choosing a candidate increase with their relative ideological prox-

imity but is almost never a certainty. This methodological decision is thought to lead

to better models of voter uncertainty [57]. A stochastic voting model has shown that

preferential skew does lead to non-median outcomes [79, 81, 146], but these models

still have one unique equilibrium.
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In our analysis, we systematically vary the ideological distribution of voters, the

appeal of ideologically-motivated third-party candidates on the far ends of the po-

litical spectrum, and the appeal of staying home all together. Finally, we map the

conditions under which rational political candidates fail to converge on the median

ideological position, and also when candidates become more extreme than the elec-

torate itself. We then analyze these dynamics with two empirically observed voter

opinion distributions from the contemporary United States.

This chapter was published in [161].

Section 4.2

Methods and Model

4.2.1. A Model of Voter Selection and Population Polarization

Our model examines how a polarized population can influence the political positions of

two strategically motivated candidates, who are purely interested in maximizing vote

share. Building and integrating the spatial models of voter choice from Hotelling [155],

Black [38,39], Poole and Rosenthal [237–241], we allow for the possibility that a voter

may either select a ideologically motivated and extreme candidate instead of a major-

party candidate, or that voters may vote for neither candidate if they find their choices

unappealing. Third-party candidates in our model are ideologically fixed on either

end of the spectrum, as it is presumed that they are motivated by representing a

specific position at the far end of the political spectrum, rather than maximizing vote

share. Unlike the two rational candidates, they do not shift their position in the

model.

Our model considers how both the ideological distribution of the voters and voter

tendencies to select one of the two major candidates should influence the political

positioning of the two main candidates. These patterns change even when the median
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and mean voter position is fixed at the center of the distribution. Before discussing

the results of our approach, we first discuss the two main components of the model:

the distribution of voter ideology and the function that is used to map voter ideology

to voter choice and behavior.

4.2.2. Ideological Distribution of Voters

We assume a one-dimensional ideological distribution of voters, x, on a scale from

0 (left) to 1 (right). We assume that the population of voters is made up of two

Gaussian sub-populations, consolidating around two “peaks” equidistant from the

ideological center (0.5). The distance between the peaks is determined by α, and the

variance in position around these two peaks is determined by σ2.

The corresponding population density function, denoted f(x), is the sum of two

Gaussians centered at 0.5± α/2:

f(x) =
c

σ
√

2π

[
exp

(
− (x− 0.5− α/2)2

2σ2

)
+ exp

(
− (x− 0.5 + α/2)2

2σ2

)]
(4.1)

where c is a normalizing constant to ensure that
∫ 1

0
f(x)dx = 1. The population

is symmetric around x = 0.5, with the median voter always located at 0.5. Figure

4.1 illustrates this distribution. While we focus on our model on a hypothetical case

in which there are two balanced left-leaning and right-leaning subpopulations, the

ideological distribution of an actual population, which is not necessarily symmetric,

can be determined using real voter data from any population of interest [56].

4.2.3. Voter Choice Function

When voters always select the most ideologically proximate candidate, both parties

would still converge to the opinion of the median voter, which is fixed at 0.5. Varying

the distribution of voters would have no effect on the strategic ideological positions
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Figure 4.1: Ideological distribution of voters as a function of the two population
parameters, α and σ. α is the distance between the two subpopulation centers, and
σ is the variance around these subpopulation centers. As σ increases, the population
distributions will become less pronounced and more diffuse.
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of the candidates.

Yet in reality political candidates may have concerns about losing their “base”

when trying to appeal to the “center”. In the one-dimensional spatial model, the

threat of losing the base only occurs when voters have the option of either abstaining

or selecting a third-party candidate that adopts a position in accordance with their

ideology as opposed to vote maximization. Conversely, voters in the center may

abstain if both candidates assume positions that are too extreme for them.

In our model, there are three variables that control voting behavior: pragma-

tism (P ), which can be thought of as the appeal of voting for a two-party candidate,

relative cost of voting (Q) which adjusts the voter tendency for staying home, and

rebelliousness (R), which determines the appeal of third-party candidates. P and R

are similar, and balance the candidate’s preferences towards an ideologically moti-

vated third-party selection or a more practical two-party selection. When voters are

more ideologically equidistant from candidates, they should be more likely to stay

home altogether. Q is a multiplier for this, such that the utility a voter receives from

not voting is a product of Q and the voter’s ideological indifference between the two

candidates.

The behavior of the voter is determined by behavioral utilities calculated from the

three above parameters, the ideological position of both of the major parties, and the

ideological position of the voter in question.

For an individual at v and major candidates at b and r ∈ [0, 1], we create the

following utilities:

Vote Blue Utility = uB(b, v) =
1

|b− v|P
(4.2)

Vote Red Utility = uR(r, v) =
1

|r − v|P
(4.3)

Abstention Utility = uA(b, r, v) = (1− |(|b− v| − |r − v|)|)Q (4.4)
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Vote Third Party Utility = uT (v) =
1

(1− v)R
+

1

vR
(4.5)

Each voter chooses from one of the four possible behaviors (vote for red, vote for

blue, vote for third party, and abstain) with a probability proportional to each of

their respective utilities. Figures 4.2 and 4.3 provide visual depictions of how voter

behavior varies in the model as functions of voter and candidate ideology, respectively.

4.2.4. Voter Choice Dynamics

Figure 4.2 shows voter utilities and corresponding probabilities for a set of parameters.

The candidates have ideological positions of 0.3 and 0.7, somewhere between being

completely polarized and converging to the middle, which roughly reflects two-party

elections in the contemporary United States. To illustrate the model, we select a

set of parameters for the proposed voter utility functions that lead to an intuitively

plausible relationship between voter ideology and voter behavior. The values P = 2,

Q = 30, and R = 1 cause more “extreme” voters with an ideology closer to 0 or

1 to be more likely to select a third party candidate or stay home. Furthermore,

the voters in the ideological valley between the two candidates are more likely to stay

home, as they do not gain much of a relative benefit from either candidate. Obviously,

different parameter values will result in different voter behavior. These values were

chosen because they do a decent job of approximating real voters’ behavior and have a

strong degree of randomness when not closely aligned with one of the main candidates.

Figure 4.3 also uses this set of “common sense” decision parameters, but instead

focused on the decision behavior of a single voter at a fixed ideological point, and

examines how voter behavior corresponds to the ideological positions of the two main

candidates. For a voter with an ideology of 0.5, a “median voter,” they become more

likely to choose a blue or red candidate when one of them adopts a platform that is

ideologically moderate. They become more likely to abstain when both candidates
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Figure 4.2: Voter utility and voting behavior of individuals across the entire political
spectrum with two fixed political candidates. (a) shows the utility that a voter
receives from different actions as a function of their position on the political spectrum,
assuming candidate positions of 0.3 and 0.7 and a specific set of model parameters
(P = 2, Q = 30, R = 1). (b) maps these utilities into one of three behaviors:
voting for the “blue” (left-leaning) candidate, the “red” (right-leaning) candidate, or
voting for neither (staying home or selecting an ideologically motivated third-party
candidate).

choose more extreme candidate positions on either the same or opposing sides of the

political spectrum.

4.2.5. Candidate Optimization

The behavior of each voter is stochastically determined as a function of their ide-

ological position, the positions of the candidates, and the parameters of our model

according to the following equations. We can determine the optimal ideological po-

sitions for two competing candidates who are motivated by maximizing vote share.

For an ideological space that stretches from 0 (on the left) to 1 (on the right), the

liberal and conservative candidates are each seeking an ideological position (called b
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Figure 4.3: Varying the candidates’ positions influences a fixed voter’s behavior. Each
panel shows how the likelihood of a given voter behavior (voting blue in (a), voting red
in (b), or voting for neither in (c)) changes as a function of the two political candidates
stated ideological position, [0, 1]2, assuming a voter ideology of 0.5, a specific set of
model parameters (P = 2, Q = 30, R = 1). (The white lines crossing the space
and point at the center reflect one-dimensional portions of the two-dimensional space
where a candidate has the exact same preference as a voter (r = 0.5 or b = 0.5), where
the two candidates are identical (r=b), or where the voter is equidistant between the
two candidates (|r − 0.5| = |b − 0.5|). In these subsets of the space, the model loses
practical interpretability for this single hypothetical voter.

and r respectively) that maximizes the value of one of the following integrals:

Blue Votes = vB(b, r) =

∫ 1

0

f(v)
uB(b, v)

uB(b, v) + uR(r, v) + uA(b, r, v) + uT (v)
dv (4.6)

Red Votes = vR(b, r) =

∫ 1

0

f(v)
uR(r, v)

uB(b, v) + uR(r, v) + uA(b, r, v) + uT (v)
dv (4.7)

Our model of the two major candidates’ theoretical optimization process in re-

sponse to voters’ behavior can be described in terms of the so-called adaptive dynam-

ics [152,312]:

db

dt
=
∂vB(b, r)

∂b
,

dr

dt
=
∂vR(b, r)

∂r
.

(4.8)
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When voters choose the most ideologically proximate of the two competing candi-

dates, both positions converge on the ideology of the median voter. Our model shows

how this result does not necessarily hold when voters might choose to abstain or select

a third party. In particular this can occur when the distribution of voter preferences

is sufficiently bimodal with a large α and small σ. Figure 4.4 shows three different

sample voter ideological distributions (d-e), and how two political candidates will ad-

just their ideological platform under a reasonable set of voter choice parameters for

each (a-c).

With these three populations, candidate behavior varies from appealing to the

median voter when competition is fierce in the high-density middle to being more

polarized than the population as candidates work to protect their most extreme voters

from a third party challenge.

Candidate Optimization Against Ideological Centrism. While our base model

works under the assumption that ideologically-motivated candidates come from the

far ends of the political spectrum, it is also possible that an ideologically fixed third-

party could run from the center. We examine the effects this has on candidate op-

timization under the parameter setting P = 5, Q = 0, and R = 5 in Figure 4.5.

Unsurprisingly, major party candidates in a bimodal population are pulled closer to

the center than under conditions of extreme third-party candidates. However, in a

unimodal population, major-party candidates are pushed towards the fringes by the

centrist third-party, as they benefit from distinguishing themselves from the centrist.

This suggests that under a certain set of voter behaviors, having an ideologically-fixed

third party candidate may be a solution to both the problems of runaway extremism

of polarization and the stasis of convergence to the center. While the remainder of

our analysis continues to focus on the case of ideologically extreme third-parties, this

insight may present a promising avenue for future empirical and theoretical research.
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Figure 4.4: Optimal position of two competing major candidates. Using stream plots,
subfigures (a)-(c) show how candidates will shift their position, with the black dot rep-
resenting the candidates’ equilibria, and the circles showing the subpopulation peaks.
Subfigures (d)-(f) show the corresponding populations in black, the two subpopula-
tions with dashed curves, the subpopulation centers represented by dashed vertical
lines, and the candidate equilibrium positions represented by solid vertical lines. We
see three types of behavior: candidates converging to the median voter (a,d), candi-
dates less polarized than the population (b,e), and candidates more polarized than
the population (c,f). All plots use a reasonable set of parameters P = 2, Q = 30, and
R = 1.
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Figure 4.5: Optimal positions of two competing major candidates in conditions of
two extreme third-parties (a)-(c) and one centrist third-party (d)-(f), with the black
dot representing the candidates’ equilibria, and the circles showing the subpopula-
tion peaks. Subfigures (g)-(i) show the corresponding populations in black, the two
subpopulations with dashed curves, the subpopulation centers represented by lightly-
colored and dashed vertical lines, the candidate equilibrium positions in the extreme
condition represented by darkly-colored and solid vertical lines, and candidate equi-
librium positions in the centrist condition represented by darkly-colored and dashed
vertical lines. When the population is bimodal (h), centrist parties “pull-in” main
candidates from the ideological peaks (b) instead of matching the ideological peaks
of the voters (e). However, when the population is more unimodal (g,i), centrist
third-party candidates either prevent main parties from completely converging to the
center (d) or push them away from the center (f), compared to extreme third-party
candidates (a,c) who cause the main-parties to converge to the center. All plots use
the set of parameters P = 5, Q = 0, and R = 5.
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Section 4.3

Results

Depending on voter predisposition to extremist third party candidates, or their will-

ingness to simply stay home in the absence of an appealing candidate, the rational

positions taken by main candidates will vary. In our model, candidates do one of

three things. They either (1) converge to the median, (2) deviate from the median

but still select positions between the two peaks of public opinion, or (3) deviate from

the median to a greater extent than the voting base. Two examples of how voter

ideology distribution shapes candidate positions is shown in Figure 4.6. For each

selected set of sample model parameters, each of the three candidate outcomes are

possible.

While possibility (2) is interesting primarily because of its deviation from the

results typically derived by the Median Voter Theorem, possibility (3) reveals a po-

tential long-term mechanism for voter polarization. While our model assumes that

voter preferences are static and the position of strategic candidates are dynamic,

other models have considered the possibility that voter positions eventually come to

resemble candidate positions [169]. If voter behavior and ideological distribution is

one that motivates extremism among rational candidates, this may in turn create a

larger spread among voters.

The model parameters have a strong influence on how the ideological structure

shapes the strategic polarization of the two main candidates. In Figure 4.7, we

see how changing P changes candidate position relative to ideological distribution

of the population. For smaller values of P , voters are less likely to “settle” for a

major candidate, and accordingly the candidates drift from one another to capture

more extremal voters, although this split does not exceed the bimodal “peaks” in the
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Figure 4.6: For two sets of model parameters, the type of equilibrium candidate
positions is shown as a function of the distribution of voter ideology. In both plots,
the x-axis is population split and the y-axis is the standard deviation of the two
sub-populations. (a) uses parameters P = 2, Q = 30, R = 1, and (b) uses P = 5,
Q = 0, and R = 5. The three regimes of interest are candidates converging to the
same position (roughly the mean/Median Voter Theorem result), separating to a
lesser extent than the population (the space between the two peaks), or separating
to a greater extent than the population. Each space is shaded by adherence to one
of these three regimes.
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Figure 4.7: Sets of model parameters where Q = 30 and R = 5, and P takes on
values from 2-5. As P increases, the voter choice model gives more weight to “prag-
matic” main party opinions, and the mapping between ideological distribution and
the relative political position of the two main parties changes. When P is smaller,
political parties diverge under most ideological distributions, but only more than the
public itself when there is large variance around two otherwise close ideological cen-
ters. When P is larger, parties converge to the middle when the population split is
small, and are more polarized than the electorate when the population split is large,
but the variance around the two ideological centers is small.

underlying population, unless variance around the peaks is large relative to variance

between the peaks. Larger values of P mean that voters are more pragmatic and

tend to favor voting for the two major parties. They are less likely to see the parties

diverge from one another, but when distance between the ideological peaks is large,

the parties may be on the extreme sides of the two population centers, and candidates

then need to capture vote-share from extremist third parties.

In Figure 4.8, we explore the full range of values for σ and α, and both large

and small values of P , Q, and R. This is shown in a series of eight two-dimensional

plots, colored by whether the two strategic parties converge to the center, split but

remain more centrist than the population centers, or split in a way that exceeds the

ideological divergence of the population centers.

This visualization lends itself to broader insights. The two parties are more likely

to converge when the ideological centers of the population structures are closer to-

gether (smaller α), although this is not the case when the cost of voting or the appeal

of third parties is large. In general, when the appeal of third-party candidates is small
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and the cost of voting is small (meaning most voters show up to the polls), assump-

tions that align more closely with earlier spatial voting models, convergence to the

center is ubiquitous. Under more unimodal ideological distributions (with large ratios

of spread around ideological centers compared to the split between the centers) the

candidates converge to the center, and with more bimodal ideological distributions

(small ratios of spread to split) the candidates still become more moderate than the

population centers. The latter type of result deviates from the traditional median

voter result because voters do not choose their most proximate candidate with cer-

tainty. Similar results hold when the cost of voting is large, but mainstream parties

have stronger appeal.

Another outcome of interest is when the two parties diverge to a greater extent

than the underlying population. This occurs under two combinations of conditions:

(a) when the ideological distance between population centers (α) is small, the spread

of voters around the population centers (σ) is large, and the cost of voting (Q) and/or

third-party appeal (R) is large, or (b) when the distance between the population cen-

ters (α) is large, the spread around the population centers (σ) is small, the third-party

appeal (R) is large, and the appeal of the main parties (P ) is small. Condition (a)

corresponds to a situation where there is a nearly unimodal but somewhat ideological

diverse electorate that is reluctant to vote or drawn to third-parties, main parties

must contend with apathy and third-party appeal by moving away from the cen-

ter and distinguishing themselves from one another. Condition (2) corresponds to a

situation where a highly and uniformly polarized electorate is drawn towards third-

parties, where main parties will win few converts from the other side, and instead

try to mobilize the extreme wings of their corresponding side of the ideological voter

distribution.
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Figure 4.8: The positioning of political parties relative to ideological population cen-
ters for different parameters of the voter choice model (P,Q,R) and different popu-
lation ideological distributions (σ, α).
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4.3.1. Incorporating Empirically Observed Ideological Distributions

The results of our model show that under the very basic assumptions of voters being

attracted to third party candidates or being prone to staying home, it may make sense

for candidates to avoid the center depending on the distribution of voter ideology. We

can incorporate observed empirical distributions of voter opinions into a set of model

parameters (P = 2, Q = 30, and R = 1) to examine how this model of voter choice

might function under contemporary ideological distributions in the United States.

Our empirical voter distributions come from two sources. In Figure 4.9a, we see the

first data set from [69]. As we can see, the population here is neither symmetric nor

bimodal. However, there is still enough spread in the distribution of the voters to

generate a separation between two candidates. The true median of the population

ideology is roughly 0.42, but candidates converge to positions at about 0.25 and

0.51. Perhaps unsurprisingly, the asymmetric distribution of voter preferences leads

to differing distances between the median position and each of the candidates.

Data from the estimated ideological positions of Twitter users provides a more

polarized empirical distribution for examination, and was taken from Figure 3 of [69]

by means of redigitialization. In Figure 4.9c we can see that there is a more roughly

bimodal distribution, although it remains asymmetric. While we unfortunately can-

not derive values of model parameters P , Q, and R without data on how individual

opinions map into votes, we can look at how candidates should behave strategically

under the observed empirical distributions and the previously used parameters of

P = 2, Q = 30, and R = 1. Once again, political candidates converge on positions

that deviate from the median of roughly 0.57, with the left-leaning candidate selecting

a position all the way at 0.2, and the right-leaning candidate selecting a position at

0.65. Curiously, while there are more voters on the right than on the left here, the far

left positions of the left half of the distribution bring the left-leaning candidate very
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Figure 4.9: Candidate optimizations based on real-world ideological distributions.
First, we show the results of testing our model on real-world data. First, we used
the distribution of voter ideology according to the Summer 2017 Political Landscape
Survey [69] (a), and the rational candidate responses to this landscape (b). We also
used an analysis of Twitter users [197] (c), and the rational candidate responses to
this landscape (d). In (a) and (c), vertical lines show the convergent position of
each candidate (blue and red) and the position of the median voter (grey). (c) also
shows the political ideology of political leaders on twitter in dashed grey, and we see
that the vertical blue and red lines match nicely with peaks for this curve. Both
models used P = 2, Q = 30, and R = 1, a set of parameters that approximate the
credence that an average voter may give to not voting or voting for a third party.
The population in (c) can be fit to a bimodal distribution. The best fit has the left
and right subpopulations’ peaks at 0.18 and 0.70, standard deviations at 0.09 and
0.07, and relative weights at 1 and 1.32, respectively. In (a), the population is less
bimodal, and so the fit has less value. However, for completeness, we give the values
here: positions 0.18 and 0.37, standard deviations 0.04 and 0.41, and relative weights
of 1 and 0.81.
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far from the median. If we suppose that in equilibrium the left choice would win half

of the time and the right choice would win half the time, the average position of the

winning candidate would be roughly 0.38, very far to the left of the median of 0.57.

In this case, the willingness of voters to abstain or vote “irrationally” for third party

candidates gives more weight to the side that entertains more extreme positions.

4.3.2. An Analytically Tractable Model of Voter Behavior

So far, our model considers a scenario where individuals decide between voting for

a major party, staying home, or voting for a third party. Voters make their choices

probabilistically rather than deterministically, with the ideological distance between

voters and candidates impacting the weights of behavioral probabilities. This prob-

abilistic decision process together with an abundance of choices make for a main

model that is a good approximation of the thought process of the average voter, but

is difficult to analyze mathematically.

Here, we examine the specific set of cases when Q = 0, and P = R = ` under

the limit ` → ∞. This creates a simplified model of voting where each voter de-

terministically selects the candidate that is most proximate to them. In this case,

everyone votes, and there is no bias in favor of strategic major party candidates at

the expense of ideologically motivated third party candidates. This simplified model

would most accurately reflect a population where the costs of voting are effectively

zero, and voters are solely motivated by their ideological similarity to candidates.

Our simplified model presented here lends itself to more tractable functions for

the total votes for a candidate, and with a few approximations, allows for closed form

solutions. Once again, parties can attempt to maximize votes by making incremental

changes to their platform. Now, however, the threat of third parties fixed at both ends

of the ideological spectrum are greatly increased, and candidates have a much larger

incentive to take polarized positions to motivate their more extreme bases. When the
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ideological separation between the two centers of political opinion increases beyond

a certain point, candidates begin to move away from the median. This is what we

refer to as the first phase shift. When ideological separation reaches the the second

phase shift, candidates begin to take on positions that are more extreme than the

subpopulations’ two ideological centers.

Voter Choice Functions and Candidate Equilibrium. In this deterministic

model of voting, the share of votes each candidate gets is a simple integral of the

population density function. A voter at v will voter for the closest of 0, 1, b, or r.

Therefore, every voter between b
2

and b+r
2

votes for blue, and every voter between b+r
2

and r+1
2

votes for red. Up to a constant factor, these quantities can be expressed as

integrals of f .

Blue votes =

∫ b+r
2

b
2

f(x)dx (4.9)

Red votes =

∫ r+1
2

b+r
2

f(x)dx (4.10)

With these simplified equations, we can find a necessary condition for admissible

equilibrium. Consider the blue party, whose share of votes is given by (4.9). The share

of votes is dependent on the party platform b, so the party can consider adjusting the

platform to increase the number of votes according to adaptive dynamics, as shown

in Equation (4.8). Blue party votes can be maximized by setting the derivative (4.9)

to be zero, which leads to:

f

(
b+ r

2

)
= f

(
b

2

)
(4.11)

When this condition is satisfied, the blue party cannot further increase votes by

changing their platform slightly. This equation can be used to find the admissible
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evolutionary stable strategy (ESS) for blue party candidate positioning.

Similarly, the necessary condition for red party votes to be maximized is

f

(
b+ r

2

)
= f

(
r + 1

2

)
(4.12)

Therefore, any given pair b and r that simultaneously ensures an admissible local

maximum (ESS) of blue and red votes, respectively, should satisify the condition:

f

(
b

2

)
= f

(
b+ r

2

)
= f

(
r + 1

2

)
(4.13)

If (4.13) is not satisfied, at least one party can shift their platform to increase the

number of their votes.

Multiple equilibrium points can exist, both stable and unstable, depending on the

ideological distribution of the population, but for the symmetric, bimodal populations

we study in this chapter, there is a single stable equilibrium satisfying 0.5 − b
2

=

r+1
2
− 0.5, that is, we have b+ r = 1 (this is because the population distribution f(x)

is symmetric with respect to x = 0.5). Just like in the stochastic model, depending

on the split and variance of the population, the candidate equilibrium can approach

the same position at median voter, have distinct positions that are bounded by the

ideological peaks of the population, or have distinct positions that are more extreme

than the ideological peaks of the population.

Analytical Results for Phase Changes. One result of central interest is when

it is strategic for candidates to select positions that diverge from that of the median

voter, and furthermore, when it benefits candidates to select ideological positions that

are more distant than the two ideological peaks of the proposed bimodal population.

We now focus on mathematically identifying the two phase changes between these
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three possible qualitative outcomes.

First, observe that the behavior of the candidates is entirely determined by the

shape of the population density function f(x), which has two parameters, α and σ.

Here we fix σ to be a constant, and consider how changing α affects the equilibrium

positions of the candidates. The change in population shape for many values of α is

shown in Figure 4.10.

When α = 0, the population is unimodal, and both candidates will unsurprisingly

converge on the median, where the density is highest. As α increases, eventually

the population density at the median will be surpassed by the population density at

b = 0.25 and r = 0.75, the points halfway between the median and the ideological

location of the two third parties (shown in Figure 4.10c). At this point, appealing to

the median voter at the expense of appealing to extreme voters is no longer optimal.

Substituting to Equation (4.13), this condition can be written as

f(0.5) = f(0.25) (4.14)

The second phase change will occur at the point where the population centers are

equal to the optimal positions for the two opposing candidates, when b = 0.5 − α/2

and r = 0.5 +α/2 (Figure 4.10e). To determine when this scenario is an equilibrium,

we substitute this into Equation (4.13), and observe that the second phase change

occurs when

f(0.5) = f

(
0.5− α

2

2

)
(4.15)

In the remainder of this section, we derive the phase changes as a function of both

α and σ.
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Figure 4.10: Optimal positions of candidates change as the population becomes more
ideologically polarizes (as α increases). The red area reflects vote share for the red
candidate, the blue area reflects vote share for the blue candidate, and the green area
reflects votes for either third party. The solid blue and red vertical lines indicate the
positions taken by the political parties, and the dashed red and blue lines indicate
the ideological peaks of the voting population. In (a) and (b), the median has a high
voter density and candidates compete for the median voter. In (c) the first phase
change is shown: α has grown so that a candidate at 0.5 can take an infinitesimally
small step away from the median and not lose any votes. The loss of the median voter
is exactly offset by the votes gained at 0.25 or 0.75. In (d), candidates are polarized
but not as much as the population. In (e), the second phase change has been reached,
and the optimal candidate position is the same as the population centers. In (f), the
population spread is wide enough that the candidates’ optimal positions are outside
the ideological modes of the population. Model parameters: σ = 0.1.
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Threshold of Population Split α for First Phase Change. We now turn to

identifying phase changes with regards to both α and σ. In order to solve Equation

(4.14) for α in terms of fixed σ, we rewrite Equation (4.1) as

f(x) = c

[
g
(
x− 0.5− α

2

)
+ g

(
x− 0.5 +

α

2

)]
(4.16)

where g(x) = 1
σ
√

2π
exp (− x2

2σ2 ) is the probability density function for the standard

normal distribution with variance σ2.

At x = 0.5, we have

f(0.5) = c
2

σ
√

2π
exp

(
−

(α
2
)2

2σ2

)
(4.17)

At x = 0.25, we have

f(0.25) =
c

σ
√

2π
[exp

(
−
(
−0.25− α

2

)2

2σ2

)
+ exp

(
−
(
−0.25 + α

2

)2

2σ2

)
] (4.18)

Therefore, the threshold of population split α for the first phase change satisfies

2 exp

(
−
(
α
2

)2

2σ2

)
= exp

(
−
(
0.25 + α

2

)2

2σ2

)
+ exp

(
−
(
−0.25 + α

2

)2

2σ2

)
(4.19)

The above equation can be further simplified to be:

exp

(
−1 + 4α

32σ2

)
+ exp

(
−1− 4α

32σ2

)
= 2. (4.20)

An approximation of α1 can be obtained since the term exp
(
−1+4α

32σ2

)
is close to
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zero, and by solving exp
(
−1−4α

32σ2

)
≈ 2, we get

α1 ≈
1

4
+ 8σ2 ln 2. (4.21)

Threshold of Population Split α for Second Phase Change. We proceed in

a similar fashion to identify the threshold α for the second phase shift, by solving

(4.15) for α in terms of fixed σ.

By equating f(0.5) = f
(
0.25− α

4

)
, we obtain

2 exp

(
−
(
α
2

)2

2σ2
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. (4.22)

An approximation of α2 can be obtained by observing that the term exp

(
−(0.25+ 3α

4 )
2

2σ2

)
is close to zero and solving 2 exp

(
−(α2 )

2

2σ2

)
= exp

(
−(−0.25+α

4 )
2

2σ2

)
. We get

α2 ≈ −
1

3
+

2

3

√
1 + 24σ2 ln 2. (4.23)

Population Parameters and Candidate Behavior. Now that we have full

equations for both of our phase changes, we can examine how the shape of the pop-

ulation density function affects the location of the candidate position equilibrium.

Here we compare the deterministic model presented in this section where voters

choose the most proximate candidate, and the model presented in the main text

where P = R = 5 and Q = 0. In this case voters never stay home, and they give

third-parties the same consideration as major parties, but they do not always choose

the most ideologically proximate candidate. We visually compare the results between

these two models in Figure 4.11.

In Fig. 4.11c, we see that for a fixed standard deviation, as the population split
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Figure 4.11: Voting probabilities and corresponding regions of behavior for the sim-
plified model presented here and the main model with parameters P = R = 5 and
Q = 0. In (a) and (b), we see how P = R = 5 and Q = 0 gives a rough approxi-
mation of the simplified model’s voting behaviors with candidates at 0.3 and 0.7. In
(c), we see how population structure affects the equilibrium position. The dashed
curves show the analytic approximations of the phase changes (equations (4.21) and
(4.23)), which match the actual phase changes very well. As the standard deviation
increases, the sub-populations become more diffuse and the approximation becomes
less accurate. (d) shows similar behavior as (c), with differences between the two
being explained by the roughness of approximation demonstrated in (a) and (b).
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increases, the density at the median goes down and the candidate split increases from

0 to greater than the population split. As the standard deviation for each of the two

underlying distributions (σ) increases, the population becomes more diffuse, and the

density around the median voter remains large, encouraging candidates to compete

for the middle and allowing more extreme voters to choose an extreme third-party.

While the two region plots have quantitative differences, they are qualitatively similar.

In both Fig. 4.11c and Fig. 4.11d there is a narrow, diagonal band in which the party

split is non-zero but less than the population split. Interestingly, this comparison

also suggests that stochastic voter decision making widens the range of population

ideology distributions that lead to outcomes in the “middle” phase space. That is,

voter stochasticity may incentivize candidates to adopt differing positions, but not

positions that are more extreme than the bimodal centers of the electorate.

Section 4.4

Discussion

The assumption that voters are purely rational is a strong one. There is strong

evidence that collective opinion dynamics are shaped by processes of social influence

[63, 113, 210], and voting behavior is no exception [251]. Here, we assume that voter

irrationality is captured by their opinion formation process, and we instead consider

how candidates should rationally respond to different levels of voter polarization and

indifference. There is no shortage of proposed mechanisms that explain why voter

attitudes have become more polarized over the years. Attitude polarization can result

from the twin-mechanisms of homophily, a phenomenon that spans the social and

biological sciences [120,190], and social influence, or the diffusion of pairs of associated

beliefs [90, 91, 128]. The programming decisions of large media outlets [61, 245, 283],

and the recommendation algorithms of social media sites can send people into wildly
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different information landscapes [29, 173]. The influence these social processes may

have on political candidates, however, is less examined. Our model shows that there

are very realistic conditions under which rationally behaving major-party candidates

will benefit from reinforcing polarization rather than by pivoting to the center.

This approach, like any model, is limited by the complexity that it omits. Re-

garding the specifics of voting in the United States, it omits details on the primary

process and how candidates may be bound by verbal commitments they made to a

primary electorate while running a general campaign. It omits the possibility of a

serious third-party entering the race with strategic rather than ideological motives.

It omits the draw that candidate personality may have on the behavior of voters.

And it assumes a linear single-dimensional model of ideological positions rather than

a multi-dimensional space [312]. It also omits the institutional and geographic com-

plexities of voting induced by district or state-based electoral systems combined with

the tendency for voters to self-sort geographically [184], and strategic attempts to ma-

nipulate this process such as gerrymandering [279]. Furthermore, our model assumes

that voters have independent, static, and rational voting preferences. The study of

collective opinion dynamics often focuses on the role of social influence, and voting

behavior is no exception. Our model assumes a pre-polarized and static distribution

of voter preferences, a simplifying assumption that allows us to focus on the rational

behavior of candidates who are trying to win over a polarized electorate.

Yet, the minimal number of realistic assumptions necessary to obtain this result

makes it all the more compelling and concerning. Stochastic voting behavior with a

bimodal ideological distribution and the option to not vote for a major candidate may

incentivize more extreme political parties. If we are to believe that voters follow can-

didates and parties just as candidates and parties follow voters, then a distributional

tipping point may exist where voters and candidates chase each other to ideological
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extremes. The solutions to this problem may be found in practices not explored in this

model. For example, as we briefly explored in Section 4.2.5, ideologically motivated

candidates running from the center may effectively “pull in” extreme but strategic

candidates, in the same way that ideologically motivated extremist candidates can

pull strategic candidates away from the center. The polarized political climate in the

United States (and elsewhere) remains a serious problem, and continued reconsid-

eration of rational choice voting models with more contemporary assumptions may

provide the theoretical material necessary to develop pragmatic solutions for ending

what is being referred to by some as a “cold civil war” [166].
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Chapter 5

Spatial Games of Fake News

Section 5.1

Introduction

In the last decade, the study of misinformation has grown rapidly. In [263], Shin,

Jian, Driscoll & Bar traced the lifecycle of 17 popular political rumors that circulated

on Twitter over 13 months during the 2012 U.S. presidential election; they found

that misinformation tends to come back multiple times after the initial publication,

while facts do not. In [305], using massive Twitter datasets, Vosoughi, Roy, & Aral

reported that the spread of true and false news follow distinctive patterns: falsehoods

diffused significantly faster, deeper, and more broadly than truths in all categories of

information [305]. Predictably, being surrounded by such a constant stream of fake

news only makes it more difficult for consumers to differentiate real and fake news in

the future [228].

Unfortunately, there are no simple solutions to “solving” the problem of fake news.

Labeling articles as containing false information may backfire by giving consumers a

false sense of security [227], and fact-checking on users posts may actually have the

reverse effect of causing them to dig in and share even more false and toxic mate-
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rial [195]. Even when individuals acknowledge that the information was false, their

opinions about the spreaders may be unchanged [286]. Making matters worse, because

almost all news media is advertiser-driven, content publishers may be incentivized to

spread false information to increase engagement from consumers [278]. Because of

these confounding factors for centralized fact-checking, we will focus on fact-checking

at the level of the individual consumer.

Misinformation is able to thrive in social networks by dominating insular com-

munities with little outside moderation known as “echo chambers.” In [106], Evans

& Fu investigated opinion formation on dynamic social networks through the lens of

coevolutionary games [233], and using the voting records of the United States House

of Representatives over a timespan of decades, the work presented and validated the

conditions for the emergence of partisan echo chambers [65,67,260]. Integrating pub-

licly available Twitter data with an agent-based model of opinion formation driven

by socio-cognitive biases, in [307], Wang, Sirianni, Tang, Zheng, & Fu recently found

that open-mindedness of individuals is a key determinant of forming echo chambers

under dueling campaign influence.

A recent study suggested using an online crowdsourced fact-checking approach as

one possible intervention to reduce misinformation [230]. Inspired by this empirical

work, here we use spatial games to study the spread of fake news by including a model

of distributed fact-checking efforts like “peer policing” to reduce the perceived payoff

to share or disseminate false information (fake news) while rewarding the spread of

trustworthy information (real news). Fact-checkers are placed into the population to

model the effect of peer policing efforts. Our agent-based model, which has individuals

sharing real or fake news depending on the behavior and success of their neighbors,

is studied with simulations as well as a rigorous mathematical analysis. We find that

the presence of echo chambers impede crowdsourced fact-checking, thereby requiring
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a much higher critical distribution threshold of fact-checkers across the population.

5.1.1. Network Formation Models

In this study, we will run our game theoretic model of fake news on a variety of

networks to test the effect of network structure on the spread of fake news. Here we

describe some of the most common families of networks and their relevant properties.

In the simplest cases, the placement of individuals and the edges between them

follow a very simple repeating pattern called a lattice. A few simple examples, shown

in Figure 5.1, include the (potentially infinite) square lattice with degree four (con-

nected to the vertices above, below, left, and right, also called the von Neumann

neighborhood) or eight (also connected to the four diagonally nearby vertices, called

the Moore neighborhood), the hexagonal lattice, and the ring lattice where each ver-

tex is connected to the m nearest neighbors.

Lattices have found great applicability in statistical physics [31, 218, 257] as well

in modeling human interaction [214, 216, 232, 288, 289]. Lattices are especially suited

to statistical physics because each particle has a location in space and interacts with

other nearby particles. While this may not be quite as true for social systems where

friends often live very far apart, physical proximity still drives many social connections

and lattices can provide an analytically clean starting point for investigations into the

effects of network structure on behavior.

Lattices of a fixed size and interior degree are completely determined. However,

there are other models of network formation that use randomness to create large

families of distinct networks that still have one or more important features in common.

When using these randomized network formation models, it is importnat to consider

the underlying probability distribution on the space of all possible graphs.

The quintessential “random graph” model is the Erdős-Rényi random graph, and

the model comes in two flavors. The first version, introduced by Paul Erdős and Alfréd
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Figure 5.1: The four types of lattice described above: square lattice with degree 4
(a), square lattice with degree 8 (b), hexagonal lattice (c), and a ring lattice with 12
vertices and degree 4 (d).

Rényi, is known as G(n,m) and is a uniform sample of all graphs on n vertices with

m edges [102]. The second, independently developed by Edgar Gilbert, is known

as G(n, p) and adds every possible edge to the network with probability p [126].

Both models are popular for their simplicity and elegance, and often easily obtained

analytical results. However, the Erdős-Rényi random graph model does not typically

produce networks resembling those found in real life [5,281]. Therefore, other network

formation models have been developed to create more “realistic” networks.

The first failure of Erdős-Rényi random graphs is in their degree distribution.

Degree for the vertices of G(n, p) is binomially distributed. On the other hand,
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it has been well-documented that real-life networks have very different distribu-

tions [51, 208, 242]. For example, many naturally occurring networks have scale-free

degree distributions in which most vertices have a relatively low degree, but a few

have extremely high numbers of neighbors. Price introduced one such model in 1976

for directed networks [243], and over 20 years later, Barabási-Albert independently

developed a model of “preferential attachment” for undirected networks [28, 209].

Both models consider how networks are formed and have a temporal aspect to their

creation: after beginning with a small network, vertices are added to the network one

at a time, choosing a predetermined number of individuals to be neighbors. Crit-

ically, in the preferential attachment model, neighbors are chosen with probability

proportional to current degree, so more popular individuals are more likely to be cho-

sen, demonstrating the “rich get richer” phenomenon that appears in various areas

of social science [269]. The networks created by this model tend to have a degree

distribution which follows a power law, meaning the probability of a having degree

k is proportional to k−α. It turns out that this can have important implications for

dynamics on a network [6, 225, 258]. We see this in Figure 5.5 when the Twitter

network is vulnerable to targeted removal of high-degree individuals.

The last model of network formation that we will make use of is the Watts-

Strogatz small-world model, which attempts to simultaneously capture two interesting

characteristics of social networks: large clustering coefficient and small average path

lengths [308]. The clustering coefficient is the probability that two individuals with

a mutual neighbor are connected by an edge. In social networks, where people often

meet through mutual friends, this can be quite high [207,208,308]. At the same time,

thanks to Stanley Milgram’s famous “six degrees of separation” experiment [193], we

know that path lengths in social networks are deceptively small, meaning it takes a

relatively small number of steps to reach a large number of people [19, 93]. Watts-
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Strogatz small-world networks are formed by taking a ring lattice with a naturally high

clustering coefficient and adding a small number of random shortcuts that drastically

reduce path lengths without significantly altering the average clustering coefficient.

We will use several of these models in this chapter, and all have found use in the

study of social systems.

The work presented in this chapter is currently being prepared for publication.

Section 5.2

Methods & Model

The foundation of our model is inspired by the virtual interactions that occur repeat-

edly on online social media sites. To begin, an individual posts a news story (either

true or false) for all of their friends or followers to see. Those who believe the story

is true can react positively to the post by liking or sharing, while those who disagree

may simply ignore the post or even attempt to debunk a false story by pointing out

flaws or sharing a link to a fact-checking website, potentially causing embarrassment

and inflicting a penalty on those who share fake news.

A key focus of this chapter is peer fact-checking as opposed to institutional fact-

checking. Recent research shows that “inoculation” with exposure to a weakened

version of misleading arguments (similar to vaccination ideas) is effective at reducing

susceptibility to misleading persuasion and thus confers psychological resistance to

fake news [24, 188, 253, 254]. By training some subset of the population to identify

and respond to fake news, we can create a decentralized fact-checking system where

innoculated individuals will be positioned to apply pressure to their social neighbors

that share fake news while also supporting their real news sharing neighbors. Inspired

by “zealot models” from the field of opinion dynamics [306], we assume that these

fact-checkers will never change belief because of the behavior of those around them,
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having been successfully inoculated against fake news,

Consider a network with a two-layer structure: the spreader layer describes the

information sharing dynamics among spreaders of real news vs. fake news. Unfortu-

nately, fake news tends to spread more effectively than real news on social media [305],

so our model gives a higher payoff to individuals sharing fake news in simulations

(our analytic results, on the other hand, work for any set of prescribed payoffs). If

a spreader of real news (labelled A) interacts with another A, they both receive a

moderate payoff; if a spreader of fake news (labelled B) interacts with another B,

they both receive a slightly larger payoff; if an A interacts with a B, both receive

a very small (or possibly negative) payoff. To contain the spread of fake news, the

natural advantage given to B players will have to be counterbalanced by a penalty

inflicted by fact-checkers. The second layer of the social network describes the en-

forcement infrastructure where these designated fact-checkers, denoted by C, perform

distributed fact-checking to their spreader neighbors: they provide a reward to A and

a harsh penalty to B. We assume the proportion of fact-checkers pC is prescribed

and static, representing the level of innoculation effort. The payoff to fact-checkers is

irrelevant as the fact-checker population is static, so for simplicity we arbitrarily set

it to zero. A selection strength parameter controls how much impact an individual’s

payoff has on her reproductive success in the update step. The payoffs and selection

strength can take arbitrary numerical values, but for the rest of this paper, unless

otherwise noted, we will use a selection strength of β = 0.5 and the payoff matrix for

this symmetric, two-player game will be:
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

A B C

A 1 0 1

B 0 2 −4

C 0 0 0

 (5.1)

Notice that in Equation (5.1), the payoff for fake news is twice the payoff for real

news, but fact-checkers also inflict a stiff punishment.

Over time, if individuals see that only certain types of stories receiving positive

feedback, they may be convinced of the accuracy of those (potentially false) narra-

tives [228] and begin sharing those same stories themselves (Figure 5.2c). We will

use a death-birth process for the evolutionary strategy update [216] to capture this

social imitation phenomenon. After computing the expected payoff πi for every indi-

vidual i, a focal individual imitates the strategy of one of its neighbors, chosen with

probability proportional to their fitness fi = exp(βπi). Thus, individuals with high

payoff are likely to be selected, but even individuals with a low payoff due to repeated

fact-checks or social isolation could be chosen to reproduce occasionally.

In our investigation, we use two flavors of this update rule: synchronous and

asynchronous. In the synchronous update, used in our simulations, every individual

simultaneously updates their strategy, while in the asynchronous update, which lends

itself to easier mathematical analysis, a single individual is chosen uniformly at ran-

dom to update. These two update rules will lead to very similar outcomes, and the

minor differences between them are manifested only in edge cases that occur rarely.

Keeping this in mind, we will treat them as the qualitatively same process operating

on different time scales.

The basic operating procedure for our model is shown in Figure 5.2. First, in-

dividuals play the fake news game with neighbors by broadcasting a real or fake
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Figure 5.2: Model schematic. We model information sharing and fact-checking
through the lens of spatial games. First, every individual shares news that is ei-
ther true (blue) or false (red), shown in (a). In (b), we see a focal individual receiving
positive or negative feedback from her neighbors depending on their relative beliefs.
These information sharing dynamics are modulated by the presence of crowdsourced
fact-checkers (green), characterized by the effect of their policing (positive or nega-
tive) and their static nature. Finally, in (c), individuals in the spreading layer updates
their strategy by copying a neighbor proportional to fitness.
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post. This post generates positive and negative feedback, which is converted into a

fitness. Figure 5.2c demonstrates the asynchronous update, where only a single focal

individual updates strategy by considering the fitness of all neighbors.

Our study of the spread of fake news is focused on three types of networks: a

30× 30 square lattice [214], the family of small-world networks [308] (also with N =

900), and a portion of the Twitter follower network [255] (N = 404719). Our small-

world networks are calibrated to have high clustering coefficients and short path

lengths. To accomplish this, we use the following parameters: base degree is 8 and

the rewiring probability is 0.03, giving us approximately 200 shortcuts. The Twitter

network is interesting for its size but also its natural clustering and the gatekeeping

individuals that control the flow of information through the network. Although edges

in the network were originally directed, we symmetrized the network to match the

bidirectional flow of information in the original model.

To initialize the system, we assign some fraction pC of the individuals as fact-

checkers, and the rest we set to be A or B players with probability 1
2
. After initializing

the system, we allow it to evolve using the one of the updating processes described

above until all possible players are sharing the same type of news or a predetermined

number of time steps is reached. At the end of the simulation, the type of news with

more sharers is said to be dominant, and if there are no individuals sharing one type

of news, we say that that strategy has gone extinct and the other strategy has fixated.

Section 5.3

Results

5.3.1. Echo Chambers and Critical Fact-checker Density

When there are very few fact-checkers, the natural advantage that fake news sharers

have allows them to drive the real news sharing strategy to extinction. Similarly,
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Figure 5.3: Echo chambers of fake news spreaders in a majority real news-spreading
population that are isolated from the rest of the population. In (a), the lightly-colored
individuals are those that have changed strategy recently. The network in (c) is a
small breadth-first subgraph of the Twitter network of approximately 1,000 vertices,
but the simulation was run on the entire ≈ 400, 000 vertex network (see Methods &
models).

when there is a sufficient fact-checker presence, the risk of punishment for spreading

misinformation is too great and the entire population shares real news. However, there

is a wide range of fact-checker densities where we see the spontaneous formation of

echo chambers in our simulations. We define echo chambers by their longevity, as

either real or fake news goes extinct unless the minority strategy manages to form

small, highly connected communities that are secured from invasion by the majority

strategy. For additional discussion about the longevity of these pseudo-steady states,

see Section A.1. Figure 5.3 shows examples of these echo chambers on the three

different network topologies we studied.

Once they form, these echo chambers are incredibly resistant to invasion, resulting

in a pseudo-steady state that cannot last forever, but will take an extremely long time

to break down. Observe in Figure 5.3a that the only individuals changing strategy

are on the borders of the echo chambers in the system. It is very unlikely that a
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small perturbation on the border will result in any change to the interior of the echo

chamber, because while individuals on the periphery of the echo chamber may be

exposed to both views, those in the interior are surrounded by like-minded individuals

and have high fitness to support the more exposed group members on the border.

Unsurprisingly, the density of fact-checkers determines which type of news sharing

is the majority and which is the minority, trapped in small and isolated communities.

Figure 5.4 shows how the long-term behavior of the system changes as the density

of fact-checkers grows. When a critical number of fact-checkers is reached, the prob-

ability of success for real news sharing increases dramatically. This critical density

is different for different network types: pc ≈ 0.235 on the square lattice, pC ≈ 0.2

for small-worlds, and pC ≈ 0.275 for the Twitter network. These results come from

simulating 50 populations at 20 different, evenly spaced fact-checker densities. At

5,000 time steps, a pseudo-steady state was declared, except the Twitter simulations

which ended at 500 time steps for computational reasons.

We can compare these results to the simple case of an infinite, well-mixed pop-

ulation evolving according to replicator dynamics [153]. When initialized with some

fraction pC of fact-checkers and the rest of the population evenly divided between real

and fake news, the system will evolve so that real news grows and fake news is driven

to extinction as long as pC >
1
11
≈ 0.091. We conclude that the network structure of

the spatial game makes containing fake news significantly more challenging. In fact,

between two to three times as many fact-checkers are needed to contain the sharing

of fake news in small, isolated echo chambers, and even more fact-checkers are needed

to have a good chance of driving fake news sharing behavior to total extinction.

Our comprehensive simulations using the payoff values in Equation (5.1) and

the synchronous update rule confirm that the formation of echo chambers occurs

across a wide range of payoff values, selection strengths, and network structures.
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Figure 5.4: The probability that over half the viable population ends up sharing real
news as a function of fact-checker density for different network topologies.
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Local variation in fact-checker density means in some areas there are no fact-checkers

(leaving room for a fake news echo chamber) and in others they make a fact-checking

wall which becomes more and more difficult for fake news sharers to penetrate as

selection strength grows.

5.3.2. Targeted Fact-checking

So far, we have only considered populations where fact-checkers are placed randomly.

However, in almost all networks, some vertices are more centrally located than others,

and this effect is particularly pronounced in naturally formed social networks. To

improve the effectiveness of crowdsourced fact-checking with limited resources, it is

vitally important to study targeted intervention algorithms by selecting the most

central vertices. Once again, we run simulations with 50 iterations, 20 density values,

and a limit of 5,000 (or 500) time steps. Our results, shown in Figure 5.5, focus

on two measures of network centrality, degree and betweenness [30], but there are

many more centrality measures and the problem of selecting individuals for optimal

fact-checking remains an open problem. Since all vertices in an infinite square lattice

have the same centrality, our work here is restricted to small-world networks and the

Twitter network.

Figure 5.5 has several interesting features. First, we see that in small-worlds, using

the degree and betweenness centralities have virtually the same performance. This

is unsurprising as the additional shortcut edges are what create short path lengths

and therefore give those individuals a high betweenness value, so the two centralities

are highly correlated. More surprising is the fact that targeted fact-checking is only

marginally more successful than random fact-checker placement, which can be seen

by comparing Figures 5.4 and 5.5. This may be due to the relatively uniform nature

of small-world networks, where there is very little variation in degree from vertex to

vertex.
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Figure 5.5: The probability of real news dominating on small-world networks and the
Twitter network using the degree and betweenness centralities to place fact-checkers.
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However, the Twitter network has much more diversity in its degree distribution

and here we see a large change between random and targeted fact-checking. By

targeting high degree or betweenness centrality individuals to be fact-checkers, we

quickly separate the spreader layer of the network into small disconnected network

components, as these types of networks are very vulnerable to targeted percolation

of the most central vertices [6, 297]. After removing the high-centrality vertices from

the spreader layer, what remains is thousands of disconnected and extremely small

networks in which there is no diffusion of any strategy regardless of payoffs because

there are no connections along which strategies can spread. These isolated singletons

and pairs are completely restrained by their initial conditions and it is about equally

likely that the initial random distribution will have more fake or real news sharers, so

the probability that real news “dominates” by having over half the viable population

hovers around 0.5 for almost all values of fact-checker density. We observed a similar

effect in Figure 5.4 for very high fact-checker densities, where the probability of real

news dominating actually decreases when pC > 0.85, but this level of fact-checking is

clearly unrealistic.

This suggests that in real world networks, a targeted crowdsourced fact-checking

effort where fact-checkers are also encouraged to share real news with their neighbors

could be highly effective with relatively little collective effort, as the network structure

will actually benefit real news instead of fake news by amplifying fact-checking efforts.

Enhancing our model by allowing fact-checkers to “pass along” real news between

neighbors is one way to more effectively study targeted fact-checking algorithms.

5.3.3. Analytic Results under Weak Selection

The selection strength β determines the effect payoff from the fake news game has

on reproductive success. As β approaches zero [215,216], the evolution of the system

comes to resemble neutral drift, in which individuals choose strategy with no regard
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for payoff. In this domain, the pseudo-steady state with its echo chambers becomes

transient and short-lived. In the following section, we derive analytical results in this

limit of weak selection.

Assuming a k-regular network structure like the square lattice, we will use an

extended pair approximation method [168] to study the emergence and spread of

honest behavior. For example, one quantity of interest is the probability that a

population with some initial condition evolves so that the entire viable population

evolves to play A, called the fixation probability of A. Our aim here is to study the

effects of changing the payoffs for real news, fake news, and fact-checkers, so we will

begin with a general payoff matrix:



A B C

A a b α

B c d γ

C 0 0 0

 (5.2)

In the limit of weak selection β � 1, we will obtain closed-form analytical condi-

tions for the fixation probabilities of A and B as functions of these payoff values.

When we suppose the network system begins with a proportion pA(0) = p of

A individuals, we can calculate the expected value mA(p) and variance vA(p) of the

change in abundance of A during the asynchronous update step where a single random

individual considers changing strategy. The fixation probability of A for an initial

fraction p of A players, denoted ρA(p), satisfies the diffusion approximation equation

for large populations (see [216] for details):

mA(p)
d

dp
ρA(p) +

(
vA(p)

2

)
d2

dp2
ρA(p) = 0 (5.3)

with the boundary condition ρA(0) = 0 and ρA(1) = 1. This equation has closed-form
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solution, and thus we can obtain an exact formula for ρA.

Our derivation of the following explicit expressions for the fixation probabilities

in terms of the payoff values, lattice degree k, and fact-checker density pc, is detailed

in Section A.3. For small values of p:

ρA(p) ≈ p+
βNp(1− p)

6k
(−u1 − 3u2) (5.4)

ρB(p) ≈ p+
βNp(1− p)

6k
(−w1 − 3w2) (5.5)

where u1 = (a− b− c + d)
(

1− k2 − 1+k
(pC−1)(1−pC)

)
, u2 = −a + b + c− d− ak + bk −

bk2 + dk2 + (k − 1)
(
c+ (b− α + γ)k − d(1 + k)

)
pC , w1 = u1, and w2 = −(u1 + u2).

In particular, we are interested in the emergence of new behavior in a previously

homogeneous population. We calculate the fixation probability ρA of a single initial A

player, called the invasion probability, and derive the conditions for truthful behavior

to be favored, that is, when ρA > 1/N where N is the size of the population. We also

repeat the process for a single B player. Using Equations (5.4) and (5.5), we examine

the effect pC and γ, the punishment defectors suffer from fact-checkers, have on the

invasion probabilities of real and fake news.

This allows us to determine the conditions under which fact-checking will be ef-

fective at stemming misinformation and quantify how steep the penalty γ needs to

be for a given proportion of fact-checkers, pC , in the system. In Figure 5.6a, we see

that for strong penalties, γ < −4, only a fifth of the population or less needs to

be fact-checkers for selection to favor real news. However, as γ gets closer to zero,

the number of fact-checkers need goes up to about half the population. The green

region of the pC − γ plane shows where selection favors fake news; this only happens

when there are very few fact-checkers. Notice that there is a wide region in orange
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Figure 5.6: The invasion probabilities of real and fake news spreaders in the limit
of weak selection using payoff values from (5.1), except for γ which varies from 0 to
−8. In (a), we see what regions of the pC − γ plane give true stories an advantage
(blue region), false news an advantage (green region), or neither (orange regions). In
(b), we see an approximation of the invasion probability for a single real news sharer
from simulations, when pC = 0.2 and β = 0.0001. These simulation results intersect
the threshold line 1

N
≈ 0.0014 close to where it was predicted by the analytic results,

indicated by the arrow.
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where selection does not favor invasion by real or fake news. This is because the fake

news game is a coordination game that tends to put minorities (like a single invading

mutant) at a disadvantage. These analytic approximations closely match extensive

simulations, as shown in Figure 5.6b.

Section 5.4

Discussion and Conclusion

This work adds to the growing body of research surrounding fake news, echo chambers,

and fact-checking and we believe that this work has immediate implications for the

study of misinformation. We have shown that the spatial structure of social networks

tends to favor the spread of fake news, but by carefully selecting fact-checkers, that

same structure can be used to combat misinformation by amplifying the effects of

fact-checking.

Our analytic results allow us to easily test potential combinations of reward and

punishment and use both “carrots and sticks” to encourage real news and dampen

fake news. Like previous work studying public goods games, we see that a strong

punishment of defectors is effective at stopping bad behavior [145,267,268].

Future work combining potential experimental behavior data [228] with our present

model will help incorporate relevant social network and psychological factors in our

research. In particular, the constants in the payoff matrix and the selection strength

were chosen fairly arbitrarily. Analyzing real-world data may allow us better esti-

mates of some of these values, which in turn can give better actionable advice about

how to actually control the spread of fake news. We would also like to analyze preex-

isting data sets or create new empirical studies to confirm our predictions regarding

the effects that the rewards and punishments of sharing real and fake news have

on the ability of fake news to spread through a population. As an example, perhaps
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placing fact-checking comments at the top of any fake news threads would sufficiently

increase the punishment suffered by fake news’s sharers to prevent its spread.

Recent theoretical research has demonstrated that partisan bias [164] and informa-

tion cascades [295] are two possible explanations for the formation of echo chambers.

Our work here shows that the spatial distribution of fact-checkers can be another

force behind echo chamber creation. However, these echo chambers require certain

conditions. One requirement is a reasonable selection strength value, but there is also

a lot of work to do studying the impact that network topology has on the spread

of fake news and the formation of echo chambers. An obvious application of this

work is to look at real-world social networks and determine what structural changes

can be made to discourage the spread of fake news. Preliminary results show that

the formation of resilient echo chambers is dependent on the type of network used.

While social media sites do resemble lattices or small worlds in some respects, there

are other properties of social networks that may be more or less conducive to echo

chamber formation.

Extensions of our present work on targeted fact-checking efforts will likely lead to

useful insights for optimizing field deployment of crowdsourcing fact-checking. There

will be a good deal of further work to do, for example, on using other network topolo-

gies and other targeting centralities. In addition, the use of larger network data sets

will give us more realistic behavior as there may be large-scale social network features

essential to the development of echo chambers that are not captured in any of the

network models we used.

Last but not least, our present work will help stimulate future work extending

targeting algorithms to multiplex networks that take into account the fact that the

interconnected ecosystems of social media platforms enable multi-channel communi-

cation and spillover from one platform to the other. In doing so, we hope to develop
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mechanistic models that allow us to explore realistic extensions incorporating social

psychological factors such as heterogeneity of social influence, repeated exposure, and

pre-existing beliefs.
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Chapter 6

Conclusion

Section 6.1

A Brief Review

Mathematics provides a vast range of tools to study real-world phenomena. Models

have been developed to take real, physical scenarios and convert them into equations,

algorithms, and other abstract ideas, at which point they can be mathematically

analyzed. Historically, in the study of social systems, game theory and network

science have been particularly versatile and useful in a wide range of applications,

and this thesis continues that tradition by applying these ideas to a range of different

collective action problems. Stochastic elements are often used to include the effects

from other factors that are not accounted for in the model, similar to the effect of

white noise in other applications, and stochastic behavior can help groups reach an

optimal outcome that may have been unreachable with greedy decision-making.

We find graph colorings to be a useful analog of coordination games that require

players that interact to make different choices, like university registrars scheduling

exams so students do not have two exams at the same time or radio stations choosing

different broadcast frequencies so there is no interference. This is different from
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the traditional study of graph colorings in which a single decision-maker has access

to all the information in the network. In our model, individuals can only see the

small subgraph that consists of them and their neighbors. When each individual has

such limited information, this becomes a non-trivial problem that is often unsolvable

without the use of random, non-greedy decisions by the players. We find that random

behavior is useful only in moderation, as too much randomness will keep the system

from ever settling into the global optimum. Also, the exact way in which randomness

is applied matters; depending on the size of the network and the number of individuals

equipped to make random decisions, it may be better for random individuals to behave

in a more restrained way.

By phrasing the random behavior of the players in terms of Markov chains, we

are able to show that the anti-coordination game and the coordination game are

equally difficult when there are only two choices. This is a surprising result, because

these are fundamentally different problems for a single omniscient observer. Solving

the coordination game and finding a uniform coloring is always trivial with global

information but solving the anti-coordination game and finding a graph coloring can

be extremely difficult when there are many choices. This work may be a guide for

drawing connections between other kinds of collective action problems in the future.

Voting as a social system is obviously critical to any democratic society and has

therefore been extensively modeled and studied by generations of political scientists.

We use a classic one-dimensional model of voting to study three competing factors that

influence modern US elections: voter abstention, radical third parties, and growing

political polarization. We find that these factors working in concert can cause vote-

maximizing politicians to become more polarized than the electorate, in defiance

of the Median Voter Theorem. Troublingly, there is a “tipping point” where the

political elites actually become more polarized than their voters, as they seek to
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defend themselves to their supporters against extremist challengers. We also use

real data from surveys and from Twitter as a first attempt to estimate some of the

parameter values that determine voters’ pragmatism, their incentive to not vote, and

their interest in third-parties.

Related to rising polarization, one of the most troubling social phenomena of the

last few years has been the rapid rise of misinformation and fake news spreading

across social media. Drawing on a large body of recent empirical work, we develop a

model of fake news spread that simulates the spread of false stories on a networked

population. Our model allows us to consider how the benefits of sharing false stories

can be counterbalanced by the possibility of being publicly shamed for spreading

disinformation. We test the effectiveness of a crowd-sourced peer policing strategy

that relies on citizen fact-checkers, and see how small variation in fact-checker density

facilitates the formation of echo chambers where individuals who hold a minority

opinion can believe they are in the vast majority. Using various social network models,

we are also able to provide evidence that a complex social structure gives fake news

a significant benefit as it is able to occupy small, isolated cliques that are hidden

away from the mainstream. Two to three times as many fact-checkers are required to

contain misinformation on a social network as compared to a well-mixed population

where everyone knows everyone.

These are powerful results, but it is important to keep in mind that they follow

from models of human behavior, and are therefore constrained by the fidelity of the

models to reality. We make many assumptions about individuals’ behavior that make

the model work but do not perfectly represent actual behavior.

In the distributed graph coloring problem, we assign individuals one of several

extremely oversimplified algorithms to guide the update process, but a preliminary

analysis of real human behavior data in the distributed coloring problem from Shirado
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and Christakis [264] shows that very few individuals pick a given strategy and stick

with it for the duration of the experiment. Despite this gap between model and reality,

our results can could still help improve human behavior by priming individuals to be

prepared to make more random choices or consider the total size of the network before

making a random choice.

The assumptions we make about voting behavior and polarization are discussed in

great detail in Chapter 4. The number of assumptions we needed to make to build a

functioning model of polarization means that our results have limited applicability in

highly sensitive activities like election forecasting. Instead, we see value in this work

as an addition to the literature examining the effects of voter abstention, third-party

candidates, and polarization on candidate behavior. Much like the Median Voter

Theorem is considered to be a broad, suggestive idea instead of a hard and fast rule,

our model can be useful to examine the interactive effects of several different factors

in voter behavior without claiming to describe every aspect individuals consider when

casting their votes.

Our study of fake news also simplifies individual behavior drastically by supposing

that all possible incentives are contained in one small payoff matrix. There are many

empirically observed effects related to fake news that are simply approximated in the

relative payoff values. For example, the possibility of fake news sharers increasing

their fake news sharing behavior after being fact-checked [195] is ignored in this

model, and we hope that any effect this might have is encompassed in the advantage

fake news sharers have over real news sharers in the absence of fact-checkers. This is

obviously an oversimplification, and a future model could be designed specifically to

study this and other aspects of online misinformation spread.

In each of these models, simplifications are made because it is impossible in prac-

tice (and probably in theory) to design a model that considers every factor in human
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behavior. The mark of a good model is having enough sophistication to derive mean-

ingful results while also being simple enough to be understandable to researchers in

the field and perhaps allow for some analytic, as opposed to simulation based, results.

We believe that the models presented in this thesis do a good job of existing in the

middle of this spectrum, with analytic results in the simple cases while also using

computer simulations to explore the full range of behavior possible in the model.

Section 6.2

Future Work

Each of these separate mathematical analyses of social systems also has their own

natural path for additional study.

6.2.1. The Distributed Graph Coloring Problem

Our current work using graph colorings has focused on the simplest case: using two

colors to solve the simplest of anti-coordination games. The obvious next step is to

examine what happens when the game becomes more complex and there are more

roles or colors to choose from. It is not clear how the likelihood of gridlock changes as

the number of colors, the size of the network, and the number of edges in the network

grow. Understanding these relationships could be instrumental in understanding

coordination problems for larger group sizes.

For two colors, we know that coordination and anti-coordination are equally dif-

ficult problems. This equivalence will not hold for more than two colors, but it is an

open question to think about how much more difficult the anti-coordination game is

when there are more options. Like the question of gridlock, this is complicated by

the fact that the number of colors needed is intricately linked with network size and

structure.
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6.2.2. Voting

There are at least two avenues for extending our study of voting and polarization.

In the first, we take a more sophisticated look at voter abstention, and think about

how the positions of both major parties changes the behavior of a single voter. In the

second, we consider how cognitive dissonance and holding seemingly contradictory

beliefs is necessary for social cohesion in a pluralistic society. We have also begun

some promising work using our one-dimensional voting model to study the impact the

system of primary elections has on which candidates win their parties nominations

and which win in the general election.

6.2.3. Fake News

One immediate extension of our work with fake news is to examine how different

network topologies impacts the spread of misinformation and the formation of echo

chambers. Much of our work is done on square lattices, but preliminary results show

that certain network types lend themselves to the formation of these isolated commu-

nities while others are simply too connected to allow small groups to wall themselves

off from the rest of the population. Studying a wider variety of network types also

means we can go deeper in our investigation regarding identifying the most impor-

tant individuals to be fact-checkers. A targeted fact-checking effort can reduce fake

news with minimal community engagement if the fact-checkers are carefully selected.

Determining which individuals are most important for the containment of fake-news

has obvious implications for tackling the very real problem of misinformation today.
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Appendix A

Derivation of Analytic Results for

Fake News Invasion Probabilities

This supplementary information contains some additional exploration of the fake news

spatial game described in the main paper, as well as the derivation of the invasion

probabilities in the limit of weak selection.

Section A.1

Echo Chamber Longevity and the Pseudo-steady

State

In this section, we expand our investigation into the role fact-checkers play in contain-

ing the spread of fake news. The density of static fact-checkers has a significant effect

on the formation of echo chambers and which strategy “dominates” by controlling

over half the viable population. Fig A.1a and A.1b show two examples of this on the

square lattice. Different strategies dominate, dependent on the fact-checker density.

In the main paper, we focused on a critical value of pC at which point selection

favors real news instead of fake. However, there is an additional point to consider.
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Figure A.1: Panels a and b show echo chambers of real news (blue) or fake news (red)
sharers that are isolated from the rest of the population by a barrier of fact-checkers
(green). Lightly-colored individuals are those that have changed strategy in the last
time step. The plot in (c) used simulations to show how the long-term behavior
changes as the fact-checker density varies, with the arrow indicating the fact-checker
density at which real news has an advantage in a well-mixed population, pC = 1/11.
As the number of fact-checkers increases, the population moves towards more real
news and less false news stories being shared.

Instead of simply containing fake news to isolated echo chambers, we may want to

select enough fact-checkers to completely eradicate fake news. On the other hand,

for a sufficiently small number of fact-checkers, it is extremely likely that eventually

the entire population will be sharing fake news. Therefore, there are actually four

different regions of behavior: fake news (B) fixates and real news (A) goes extinct,

fake news has the advantage in the population with small real news echo chambers,

real news has the advantage with small fake news echo chambers, and real news fixates

while fake news goes extinct. This sequence of behaviors and their probabilities are

shown in Fig A.1c.

We can see the formation of echo chambers for a wide range of fact-checker densi-
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Figure A.2: The characteristic evolution of a 900 individual population with pC = 0.2
over the course of 2000 time steps. In (a), we can see that after a short chaotic period,
the system reaches a pseudo-steady state and the number of true news sharers is fairly
constant except for short bursts of disruption when clusters of individuals all shift
strategy together. In (b), we get a more detailed look at what happened in the same
system by looking at the size of individual connected components. Around t = 1100,
the single large component of real news sharers splits into two separate components.
Then at about t = 1800, the two components are joined together as a small cluster
between them changes back to sharing real news.

ties, approximately 0.15 to 0.5 in the case of the square lattice with selection strength

β = 0.5. We call behavior in this region the pseudo-steady state because these echo

chambers are highly resistant to invasion and thus can persist for millions of time

steps. However, it is not a true steady state because with an infinite amount of time,

eventually the echo chambers will break down and one strategy will go extinct.

We can see the resilience of these echo chambers by looking at the number of real

news sharers as a function of time. Figure A.2a shows the prevalence of real news in

a single representative simulation. The number of cooperators drops swiftly at first

before stabilizing at around 290 cooperators. There are small shifts at t ≈ 1100 and
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t ≈ 1800, but otherwise the population is unchanging except for minor perturbations

on the border of echo chambers. Fig A.2b gives more detail, showing the size of

each path-connected component of real news sharers. By comparing Fig A.2a and

b, we see that the changes in cooperator population size corresponds to the large

290-individual echo chamber breaking into two smaller components, one with ≈ 250

individuals and the other with ≈ 20, and then fusing back together.

On the square lattice, the formation of echo chambers and the pseudo-steady

state seems to occur across a wide range of fact-checker densities. As shown in

the main paper, we also observe echo chamber formation on small-world networks

and the twitter network. However, this is not a uniform property of all networks.

Preliminary results show that the formation of echo chambers and the critical pC

value are dependent on network topology; lattices and small-worlds are fertile ground

for echo chambers, but Erdös-Renýı random graphs and scale-free networks are not.

This leads us to hypothesize that a relatively high clustering coefficient is essential for

the formation of echo chambers. This intuitively makes sense, as echo chambers are

dependent on the feedback loops possible in cliquish, highly connected communities.

Section A.2

Fact-checker Inaccuracy

In reality, fact-checking is subject to human errors. Some fake news occasionally goes

unnoticed and endorsed, and some real news is temporally labelled to be fake by well-

meaning fact-checkers. When relying on citizen fact-checkers instead of professional

journalists for peer policing purposes, the accuracy of fact-checking will inevitably

go down as laymen are less prepared to accurately assess fake news. Suppose that

fact-checkers have an accuracy in their policing of λ ∈ [0, 1]. With probability λ, they

correctly assess a post’s accuracy and reward benefit α to true news spreaders and
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penalty γ to fake news spreaders. With probability 1 − λ, an error occurs, leading

to the opposite payoff assignments. Using the same method we use to calculate the

analytic fixation probabilities, we will quantify the precision threshold required for

fact-checkers to ensure fair and transparent policing of wrongdoers while in favor of

real news spreaders. For the exact expressions, see the end of the section on analytic

derivations below. Figure A.3 shows the relationship between invasion probabilities

on the pC − λ plane when using the following payoff matrix:



A B C

A 1 0 1

B 0 2 −4

C 0 0 0

 (A.1)

In Fig A.3a, we see that when λ < 0.5, selection always favors fake news. This

is unsurprising, as it means that the supposed fact-checkers are actually giving more

benefit to fake news spreaders than real news spreaders. However, there is a clear

buffer in which fact-checkers can be accurate only about 80% of the time without

necessitating a drastic increase in the critical fact-checker density for selection to

favor real news.

Fig A.3b shows an interesting phenomenon. When fact-checker accuracy is very

close to 1/2 and the number of fact-checkers is extremely high, selection actually favors

invasion by both real and fake news. This is surprising because this real vs fake news

game is a coordination game which tends to oppose invading mutants. While this set

of parameters is unrealistic and would never appear in any real population, it still

demonstrates an interesting property of the dynamics of coordination games in the

presence of zealots or extreme environmental conditions.
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Figure A.3: The results of varying the accuracy of fact-checkers. In (a), we see the
where in the pC − λ plane selection favors true news (blue), false news (green), or
neither (orange). However, when the density of fact-checkers is very high and fact-
checkers are not very accurate, selection can actually favor invasion by true or false
news, as shown in (b). This is surprising because this is a coordination game and it
is rare for selection to favor invasion by both strategies. However, this combination
of parameter values is highly unrealistic and would never occur in real life.
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Section A.3

Derivation of Analytic Results

In this section, we derive the invasion probabilities of single cooperators and defectors

in the limit of weak selection. We begin by introducing the necessary notation. We

have N individuals on a network, each with k neighbors, and they play a game with

a general payoff matrix



A B C

A a b α

B c d γ

C 0 0 0

 (A.2)

pA, pB, and pC are the proportions of A, B, and C players. Similarly, pS1S2 is the

proportion of edges leading from an individual playing S1 to an individual playing

S2, where S1 and S2 can be A, B, or C. We will also be interested in the conditional

probability of finding an individual playing S2 by following a random edge that starts

at an individual playing S1, which will be denoted qS2|S1 . By basic probability, qS2|S1 =

pS1S2
pS1

.

For an individual playing Si, πSi is the total payoff, or the sum of the payoffs from

each interaction with a neighbor. The payoff of any A or B individual is dependent

on the neighbors’ strategies, but we are interested in the expected payoff which only

depends on the quantities already listed. With selection strength β, fSi = eβπSi is the

fitness of an individual playing Si.

We have two normalization conditions that ensure that all our probabilities sum

to 1:

pA + pB + pC = 1 (A.3)

pAA + pAB + pAC + pBA + pBB + pBC + pCA + pCB + pCC = 1 (A.4)
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Additionally, there are three symmetry conditions. These need not be true in

general, but because the network we are using is undirected, an edge from S1 to S2

is also an edge from S2 to S1. Therefore:

pAB = pBA (A.5)

pAC = pCA (A.6)

pBC = pCB (A.7)

Finally, we have three consistency conditions:

pA = pAA + pAB + pAC (A.8)

pB = pBA + pBB + pBC (A.9)

pC = pCA + pCB + pCC (A.10)

With all these conditions, we can simplify the system until there are only five

independent variables: pA, pB, pAA, pBB, pCC . The other four variables can be solved

in terms of these five:

pC = 1− pA − pB (A.11)

pAB = pBA = 1/2
[
(pA − pAA) + (pB − pBB)− (pC − pCC)

]
(A.12)

pAC = pCA = 1/2
[
(pC − pCC)− (pB − pBB) + (pA − pAA)

]
(A.13)

pBC = pCB = 1/2
[
(pB − pBB) + (pC − pCC)− (pA − pAA)

]
(A.14)

Now we are ready to derive differential equations for the systems evolution in

time.
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A.3.1. Pair Approximation

The game between real and fake news is a coordination game, and because of this,

individuals will tend to form clusters of like-minded individuals, as observed in simu-

lations. However, because of this, the probabilities along two successive edges are not

independent. That is to say, if pS1S2S3 is the probability of starting at an S1 player,

following a random edge to an S2 player, and then following another random edge to

an S3 player, we do not get that

pS1S2S3 =
pS1S2pS2S3

pS2

(A.15)

However, this makes studying the system untenable. Pair approximation alleviates

this problem by making the simplifying assumptions that edges are independent and

therefore Equation (A.15) holds.

In the death-birth process, an individual is chosen to “die” and a neighbor is chosen

to replicate and take the deceased individuals place. However, if the two individuals

are playing the same strategy, nothing in the population will have changed. The only

way the system changes is if an A individual takes the place of a B individual or vice

versa, so we focus on the frequency of these two events to study the system.

We use the modified update step where only one individual is replaced per time

step. This slows down the system’s evolution by a factor of 1
N

, but it has very little

effect on the behavior of the system, and it makes the system much easier to approach

analytically. With a discrete time step ∆t = 1
N

so that one individual is replaced per

time step, the differential equations for pA and pAA are:

ṗA =
1

N

E(∆nA)

∆t
= E(∆nA) (A.16)

˙pAA =
2

kN

E(∆nAA)

∆t
=

2

k
E(∆nAA) (A.17)
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We first focus on computing E(∆nA). Because only one individual updates at a

time, E(∆nA) = P (∆nA = 1)−P (∆nA = −1). nA increases by one when a B player

is replaced by an A player, and nA decreases by one when an A player is replaced by

a B player. We now derive the probability of an A player replacing a B player. The

probability of B invading A follows by symmetry.

The B player that is being replaced has k neighbors, each of which can be an A,

B, or C player. Specifically, the focal B player has kAB A neighbors, kBB B neighbors,

and kCB C neighbors with probability

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B (A.18)

and there is always the restriction that kAB + kBB + kCB = k.

Each of these neighbors has k−1 neighbors (not including the focal B player) that

are also multinomially distributed. An A-playing neighbor will have k′AA A neighbors,

k′BA B neighbors, and k′CA C neighbors with probability

(k − 1)!

k′AA!k′BA!k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A (A.19)

Here we used pair approximation, because we ignore the higher-order terms that

might arise knowing that the A player already has a B neighbor.

Likewise, the B and C players neighboring the focal B player have neighbors

whose strategies are multinomially distributed. To determine the strategy the focal

B player will choose to imitate, we need to know the payoffs of all of the neighbors.

An A neighbor of the focal B player who has k′AA A neighbors, k′BA B neighbors

(not including the focal B player), and k′CA C neighbors has payoff

πA = k′
A
Aa+ (k′

B
A + 1)b+ k′

C
Aα (A.20)
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and fitness

fA(k′
A
A, k

′B
A, k

′C
A) = eβπA (A.21)

The same quantities for the B and C neighbors work the same way.

πB = k′
A
Bc+ (k′

B
B + 1)d+ k′

C
Bγ (A.22)

fB(k′
A
B, k

′B
B, k

′C
B) = eβπB (A.23)

πC = k′
A
C0 + (k′

B
C + 1)0 + k′

C
C0 = 0 (A.24)

fC(k′
A
C , k

′B
C , k

′C
C) = eβπC = 1 (A.25)

We are interested in the focal B player being replaced by an A player. Because

individuals choose who to copy proportional to fitness, the probability of the B player

selecting one of its A neighbors is

kABfA
kABfA + kBBfB + kCBfC

(A.26)

All that remains is to sum over all possible configurations of the B player’s neigh-

bors and their neighbors and multiply by pB (the probability that a B player is

selected to update) to get the final probability WAB that a B player is replaced by

an A player:
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WAB = pB ·
∑

kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA!k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB!k′BB!k′CB!
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kABfA(k′AA, k
′B
A + 1, k′CA)

kABfA(k′AA, k
′B
A + 1, k′CA) + kBBfB(k′AB, k

′B
B + 1, k′CB)

+ kCBfC(k′AC , k
′B
C + 1, k′CC)

(A.27)

(Though it is difficult to typeset within the margins, note that this is a nested

sum and not the product of four separate sums.) Likewise, WBA, the probability of

B invading A, is

WBA = pA ·
∑

kAA+kBA+kCA=k

k!

kAA!kBA !kCA !
q
kAA
A|Aq

kBA
B|Aq

kCA
C|A

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA!k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB!k′BB!k′CB!
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kBAfB(k′AB + 1, k′BB, k
′C
B)

kAAfA(k′AA + 1, k′BA, k
′C
A) + kBAfB(k′AB + 1, k′BB, k

′C
B)

+ kCAfC(k′AC + 1, k′BC , k
′C
C)

(A.28)

Furthermore, when B is invaded by A it increases the number of A− A pairs by

kAB, so we can define φAAB to be the expected value for the change in A−A edges due
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to a B player being invaded by an A player. (The subscript describes the direction of

invasion and the superscript determines which pair it corresponds to, so φAAB means

an A player is replacing a B player, and this term tells us about the change in A−A

pairs.) Like in (A.27), we have

φAAB = pB ·
∑

kAB+kBB+kCB=k

kAB
k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA!k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB!k′BB!k′CB!
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kABfA(k′AA, k
′B
A + 1, k′CA)

kABfA(k′AA, k
′B
A + 1, k′CA) + kBBfB(k′AB, k

′B
B + 1, k′CB)

+ kCBfC(k′AC , k
′B
C + 1, k′CC)

(A.29)

Note that (A.29) only differs from (A.27) in a single kAB term in the first line,

which is there because we are interested in the expected value of the change in A−A

edges, and there are kAB new A−A edges being formed. Similarly, we can write down:
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φABA = pA ·
∑

kAA+kBA+kCA=k

kAA
k!

kAA!kBA !kCA !
q
kAA
A|Aq

kBA
B|Aq

kCA
C|A

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA!k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB!k′BB!k′CB!
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kBAfB(k′AB + 1, k′BB, k
′C
B)

kAAfA(k′AA + 1, k′BA, k
′C
A) + kBAfB(k′AB + 1, k′BB, k

′C
B)

+ kCAfC(k′AC + 1, k′BC , k
′C
C)

(A.30)

φBAB = pB ·
∑

kAB+kBB+kCB=k

kBB
k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA!k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB!k′BB!k′CB!
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kABfA(k′AA, k
′B
A + 1, k′CA)

kABfA(k′AA, k
′B
A + 1, k′CA) + kBBfB(k′AB, k

′B
B + 1, k′CB)

+ kCBfC(k′AC , k
′B
C + 1, k′CC)

(A.31)
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φBBA = pA ·
∑

kAA+kBA+kCA=k

kBA
k!

kAA!kBA !kCA !
q
kAA
A|Aq

kBA
B|Aq

kCA
C|A

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA!k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB!k′BB!k′CB!
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kBAfB(k′AB + 1, k′BB, k
′C
B)

kAAfA(k′AA + 1, k′BA, k
′C
A) + kBAfB(k′AB + 1, k′BB, k

′C
B)

+ kCAfC(k′AC + 1, k′BC , k
′C
C)

(A.32)

Once we have these quantities (Equations (A.27) - (A.32)), we have expressions

for all of our independent variables.

˙pCC = 0 (A.33)

ṗA = −ṗB = WAB −WBA (A.34)

˙pAA =
2

k
(φAAB − φABA) (A.35)

˙pBB =
2

k
(φBBA − φBAB) (A.36)

A.3.2. Weak Selection

Even with the substantial simplification from pair approximation, the previous results

are too complicated and unwieldy to be useful by themselves. Because of compound-

ing sums, directly calculating the derivatives requires adding millions of terms if

k = 8. Furthermore, the pair approximation means that we lose the information

critical to clustering, and therefore the analytic results here will fail to capture the
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pseudo-steady states that we observe when β is much larger than zero.

We can sidestep both these issues by working in the limit of weak selection. In

weak selection, the success or failure of an individual in the fake news game is only one

small factor in the individual’s success, and fitnesses are much more uniform across

the population. When β is close to zero, we can throw out higher order terms which

simplifies the expression, and when β is close to zero, the pseudo-steady states cannot

exist anyways because the system behaves approximately like neutral drift. Taking

the Taylor expansion of the exponential in equations (A.21) and (A.23) with respect

to β and only keeping the low order terms, what is left is mathematically tractable.

We have expressions for each of WAB,WBA, φ
A
AB, φ

A
BA, φ

B
BA, φ

B
AB. We manipulate each

separately and bring them back together at the end.

A.3.3. WAB and WBA:

Equation (A.27) gives us an expression for WAB. The fact-checkers playing C have

constant fitness, fC = 1, and no other terms in the last line of (A.27) depend on the

neighbors of C players, so we can pull it all through the final sum which collapses to

1 because it is the sum of the probabilities of all possible configurations of neighbors,

which must be 1. Therefore,

WAB = pB ·
∑

kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

kA
′

A +kB
′

A +kC
′

A =k−1

(k − 1)!

kA
′

A !kB
′

A !kC
′

A !
q
kA

′
A

A|Aq
kB

′
A

B|Aq
kC

′
A

C|A

·
∑

kA
′

B +kB
′

B +kC
′

B =k−1

(k − 1)!

kA
′

B !kB
′

B !kC
′

B !
q
kA

′
B

A|Bq
kB

′
B

B|Bq
kC

′
B

C|B

· kABfA(kA
′

A , k
B′
A + 1, kC

′
A )

kABfA(kA
′

A , k
B′
A + 1, kC

′
A ) + kBBfB(kA

′
B , k

B′
B + 1, kC

′
B ) + kCB

(A.37)
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Then, using the Taylor expansion for the exponentials in fA and fB but only keeping

the low order terms of β, we have

kABfA(kA
′

A , k
B′
A + 1, kC

′
A )

kABfA(kA
′

A , k
B′
A + 1, kC

′
A ) + kBBfB(kA

′
B , k

B′
B + 1, kC

′
B ) + kCB

≈
kAB
(
1 + β(akA

′
A + b(kB

′
A + 1) + ckC

′
A )
)

kAB
(
1 + β(akA

′
A + b(kB

′
A + 1) + αkC

′
A )
)

+ kBB
(
1 + β(ckA

′
B + d(kB

′
B + 1) + γkC

′
B )
)

+ kCB

=
kAB(1 + βu1)

k + β(kABu1 + kBBu2)

≈ kAB(1 + βu1)[
1

k
− kABu1 + kBBu2

k2
β]

≈ kAB
k

+ β[
kABu1

k
− kAB

kABu1 + kBBu2

k2
]

(A.38)

where u1 = akA
′

A +b(kB
′

A +1)+αkC
′

A and u2 = ckA
′

B +d(kB
′

B +1)+γkC
′

B . By carefully

pulling terms through the sums, we have the following identities:

∑
kA

′
A +kB

′
A +kC

′
A =k−1

(k − 1)!

kA
′

A !kB
′

A !kC
′

A !
q
kA

′
A

A|Aq
kB

′
A

B|Aq
kC

′
A

C|Au1

= a(k − 1)qA|A + b
(
(k − 1)qB|A + 1

)
+ α(k − 1)qC|A

= EA + b

(A.39)

∑
kA

′
B +kB

′
B +kC

′
B =k−1

(k − 1)!

kA
′

B !kB
′

B !kC
′

B !
q
kA

′
B

A|Bq
kB

′
B

B|Bq
kC

′
B

C|Bu2

= c(k − 1)qA|B + d
(
(k − 1)qB|B + 1

)
+ γ(k − 1)qC|B

= EB + d

(A.40)

Notice that EA and EB are the expected payoffs for A and B players from k − 1
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neighbors. Using these identities on our equation for WAB, we get that

WAB = pB ·
∑

kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·

[
kAB
k
− βk

B
Bk

A
B

k2
(EB + d) + β

kAB
k

(EA + b)− βk
A
B

2

k2
(EA + b)

] (A.41)

Each of these four terms in the brackets can be dealt with separately in similar

fashion: ∑
kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
kAB
k

]
= qA|B (A.42)

∑
kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
− βk

B
Bk

A
B

k2
(EB + d)

]

= −β (EB + d)

k2
k(k − 1)qA|BqB|B

(A.43)

∑
kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
β
kAB
k

(EA + b)

]
= β(EA + b)qA|B (A.44)

∑
kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
− βk

A
B

2

k2
(EA + b)

]

= −β (EA + b)

k2
kqA|B[(k − 1)qA|B + 1]

(A.45)

Therefore,

WAB = pB

[
qA|B + β

(
(EA + b)qA|B −

EA + b

k
qA|B

− k − 1

k
qA|B

[
(EB + d)qB|B + (EA + b)qA|B

])]
+O(β2)

(A.46)

Using the same techniques, we can simplify our expression for WBA:
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WBA = pA

[
qB|A + β

(
(EB + c)qB|A −

EB + c

k
qB|A

− k − 1

k
qB|A

[
(EB + c)qB|A + (EA + a)qA|A

])]
+O(β2)

(A.47)

Note immediately that since pBqA|B = pAqB|A, the zero-th order terms of WAB

and WBA are equal.

A.3.4. The φs:

The pair derivatives are non-zero, even when β = 0, so we will focus only on the

zeroth order terms, because these will dominate the first-order terms when β is small.

φAAB = pB·
∑

kAB+kBB+kCB=k

kAB
k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

kA
′

A +kB
′

A +kC
′

A =k−1

(k − 1)!

kA
′

A !kB
′

A !kC
′

A !
q
kA

′
A

A|Aq
kB

′
A

B|Aq
kC

′
A

C|A

·
∑

kA
′

B +kB
′

B +kC
′

B =k−1

(k − 1)!

kA
′

B !kB
′

B !kC
′

B !
q
kA

′
B

A|Bq
kB

′
B

B|Bq
kC

′
B

C|B

·
∑

kA
′

C +kB
′

C +kC
′

C =k−1

(k − 1)!

kA
′

C !kB
′

C !kC
′

C !
q
kA

′
C

A|Cq
kB

′
C

B|Cq
kC

′
C

C|C

· kABfA(kA
′

A , k
B′
A + 1, kC

′
A )

kABfA(kA
′

A , k
B′
A + 1, kC

′
A ) + kBBfB(kA

′
B , k

B′
B + 1, kC

′
B )

+ kCBfC(kA
′

C , k
B′
C + 1, kC

′
C )

(A.48)

The zeroth order terms are what is left when β = 0, or when we have neutral drift.

In that case, fA = fB = fC = 1, and most of the sums collapse to 1. We quickly get

that

φAAB =
pB
k

∑
kAB+kBB+kCB=k

k!

kAB!kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|Bk

A
B

2
(A.49)
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We relabel for notational convenience and readability when evaluating this sum. Let

X = kAB, Y = kBB , Z = kCB . Then the sum is

∑
X+Y+Z=k

k!

X!Y !Z!
qXA|Bq

Y
B|Bq

Z
C|BX

2

=kqA|B
∑

(X−1)+Y+Z=k−1

(k − 1)!

(X − 1)!Y !Z!
qX−1
A|B q

Y
B|Bq

Z
C|B(X)

=kqA|B
∑

(X−1)+Y+Z=k−1

(k − 1)!

(X − 1)!Y !Z!
qX−1
A|B q

Y
B|Bq

Z
C|B(X − 1)

+ kqA|B
∑

(X−1)+Y+Z=k−1

(k − 1)!

(X − 1)!Y !Z!
qX−1
A|B q

Y
B|Bq

Z
C|B

=kqA|B

(
(k − 1)qA|B

∑
(X−2)+Y+Z=k−2

(k − 2)!

(X − 2)!Y !Z!
qX−2
A|B q

Y
B|Bq

Z
C|B + 1

)
=kqA|B

(
(k − 1)qA|B + 1

)

(A.50)

Immediately, we get,

φAAB = pBqA|B

(
(k − 1)qA|B + 1

)
+O(β) (A.51)

The other φ terms are calculated in the same way. They are:

φABA = pA(k − 1)qA|AqB|A +O(β) (A.52)

φBBA = pAqB|A

(
(k − 1)qB|A + 1

)
+O(β) (A.53)

φBAB = pB(k − 1)qB|BqA|B +O(β) (A.54)

A.3.5. The Slow Manifold

With these simplified equations, we can solve the system. Consider the zero-th order

terms, setting β = 0. WAB = WBA, so ṗA = ṗB = ṗC . Now we address ˙pAA, ˙pBB, and

˙pAB:

142



A.3 Derivation of Analytic Results Appendix A

With the above derivatives and (A.12), we get that

˙pAB = −1

2
( ˙pAA + ˙pAA) (A.55)

By substituting (A.51) and (A.52) into (A.35):

˙pAA =
2

k

[
φAAB − φABA

]
=

2

k

[
pBqA|B

(
(k − 1)qA|B + 1

)
− pA(k − 1)qA|AqB|A

]
=

2

k

[
pBqA|BqA|B(k − 1)− pAqA|AqB|A(k − 1) + pBqB|A

]
=

2

k

[p2
AB

pB
(k − 1)− pAApAB

pA
(k − 1) + pAB

]
(A.56)

Similarly, with (A.53) and (A.54) in (A.36):

˙pBB =
2

k

[
φBBA − φBAB

]
=

2

k

[
pAqB|A

(
(k − 1)qB|A + 1

)
− pB(k − 1)qB|BqA|B

]
=

2

k

[
pAqB|AqB|A(k − 1)− pBqB|BqA|B(k − 1) + pAqB|A

]
=

2

k

[p2
AB

pA
(k − 1)− pABpBB

pB
(k − 1) + pAB

]
(A.57)

Now subtract (A.57) from (A.56):

˙pAA − ˙pBB =
2

k

[p2
AB

pB
(k − 1)− pAApAB

pA
(k − 1) + pAB

]
− 2

k

[p2
AB

pA
(k − 1)− pABpBB

pB
(k − 1) + pAB

]
=

2(k − 1)

k

[p2
AB

pB
− pAApAB

pA
− p2

AB

pA
+
pABpBB
pB

] (A.58)

When the system is initialized at t = 0, it is well-mixed and pS1S2(0) = pS1(0)pS2(0)

for all strategies S1 and S2. Thus, at t = 0, by equation (A.58), ˙pAA− ˙pBB = 0. And
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together with (A.55), we have

˙pAA = ˙pBB = − ˙pAB (A.59)

In fact, this will hold for all time steps, because as long as it holds, it will continue

to hold. A sketch of a formal proos is as follows: solve the system with Euler’s

method and take the limit as the discrete time step goes to zero. By the convergence

of Euler’s method, (A.59) holds for all t.

From this, (A.13) and (A.14) show that ˙pAC = ˙pBC = 0. Then,

˙qC|A =
d

dt

pAC
pA

=
˙pACpA − pAC ṗA

p2
A

= 0 (A.60)

Similarly, ˙qC|B = 0. These results are expected because in neutral drift, the fact-

checkers do not give either strategy an advantage, so fact-checkers will not naturally

attract A players or repel B players.

Because β is very small, the zero-th order terms in ṗAA and ṗBB will go to zero

much quicker than the first order terms in ṗA and ṗB. Set ṗAA = 0:

ṗAA =
2

k

[
pBqA|B

(
(k − 1)qA|B + 1

)
− pA(k − 1)qA|AqB|A

]
= 0 (A.61)

Rearranging and dividing by 2pAB
k

gives

(k − 1)qA|B + 1 = (k − 1)qA|A (A.62)

Now use the identities qA|B = pA
pB
qB|A and qB|A = 1− qA|A − pC and rearrange to get

qA|A = pA +
pB

(k − 1)(1− pC)
(A.63)
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A similar procedure with ṗBB = 0 yields

qB|B = pB +
pA

(k − 1)(1− pC)
(A.64)

These conditions define the slow manifold, where the system changes slowly due

to β being close to zero. The system may start as a well-mixed population, but it will

very quickly approach a state where the above conditions hold, at least approximately.

Notice that the slow manifold is one-dimensional; everything can be expressed in terms

of pA, because pB = 1− pC − pA, and pC will be a constant.

A.3.6. Fixation Probabilities

Consider a system starting with pA(0) = p and a small time step ∆t in which we

assume one death-birth occurs. Renormalize with pAnew = pAold/(1−pC) and pBnew =

pBold/(1− pC) so that pA and pB are between 0 and 1. Now pA and pB represent the

proportion of individuals playing A or B out of all the individuals that are capable of

changing their strategy (the A and B players). There is a mean mA(p) and variance

vA(p) of ∆pA for a single time step. We have

mA(p) = E(∆pA) =
1

N
[WAB −WBA] = [WAB −WBA]∆t (A.65)

vA(p) = E(∆p2
A)− E(∆pA)2 = E(∆p2

A) +O(β2)

≈ 1

N2
[WAB +WBA] =

1

N
[WAB +WBA]∆t

(A.66)

The relevant value will be −2mA(p)
vA(p)

, which can be obtained by substituting in the

constraints of the slow manifold: Equations (A.63) and (A.64). After substituting in

the expressions for WAB and WBA, simplifying gets us:

− 2mA(p)

vA(p)
=
βN

k
(u1p+ u2) (A.67)
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where

u1 = (a− b− c+ d)(1− k2 − 1 + k

pC − 1
)(1− pC) (A.68)

u2 = −a+b+c−d−ak+bk−bk2 +dk2 +(k−1)
(
c+(b−α+γ)k−d(1+k)

)
pC (A.69)

According to diffusion theory, the fixation probability of A beginning with pA(0) =

p, denoted ρA(p), satisfies the equation

mA(p)
dρA(p)

dp
+
vA(p)

2

d2ρA(p)

dp2
= 0 (A.70)

This equation is separable and first order with respect to dρA(p)
dp

.

ln
dρA(p)

dp
=

∫
−2mA(p)

vA(p)
dp (A.71)

The low order terms are

dρA(p)

dp
= 1 +

βN

k

(u1

2
p2 + u2p

)
+ c1 (A.72)

c1 is a constant of integration. Integrating once more gives

ρA(p) = p+
βN

k

(u1

6
p3 +

u2

2
p2
)

+ c1p+ c2 (A.73)

Using the boundary conditions ρA(0) = 0 and ρA(1) = 1 to solve for the constants of

146



A.3 Derivation of Analytic Results Appendix A

integration, we get

ρA(p) =p+
βN

k

(u1

6
p3 +

u2

2
p2 − (

u1

6
+
u2

2
)p
)

=p+
βNp(1− p)

6k

(
− 3u2 − u1(1 + p)

) (A.74)

When p� 1, such as when p = 1/N for invasion probabilities, (A.74) becomes

ρA(p) ≈ p+
βNp(1− p)

6k

(
− 3u2 − u1

)
(A.75)

We can use this work to calculate the fixation probability for the B strategy,

as well. For a given pA and pB with pA + pB = 1, mB(p) = −mA(1 − p) and

vB(p) = vA(1− p). Therefore

−2mB(p)

vB(p)
=

2mA(1− p)
vA(1− p)

= −βN
k

(
u1(1− p) + u2

)
=
βN

k

(
u1p− (u1 + u2)

)
(A.76)

From this, as in (A.75),

ρB(p) = p+
βN

k

(w1

6
p3 +

w2

2
p2 − (

w1

6
+
w2

2
)p
)
≈ p+

βN

k

(
− w1 − 3w2

)
(A.77)

with w1 = u1 and w2 = −(u2 + u1).

A.3.7. Fact-checker Accuracy

The adjustment to include a parameter λ to take into account inaccurate fact-checkers

is very simple. Recall that a fact-checker with accuracy λ ∈ [0, 1] gives benefit α to

an A player and penalty γ to a B player with probability λ, and gives the opposite

payoffs with probability 1 − λ. Therefore, the expected payoff an A player receives

from a C player is λα+(1−λ)γ and the expected payoff for a B player is λγ+(1−λ)α.

All the previous work with pair approximation, weak selection, and the diffusion
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approximation still hold, but we can replace the old expected payoffs of α and γ with

the new expected payoffs λα+(1−λ)γ and λγ+(1−λ)α, respectively. Conveniently,

the substitution can be done at the very end, where α and γ appear as coefficients in

Equation (A.69).
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[6] Réka Albert, Hawoong Jeong, and Albert-László Barabási, Error and attack
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Filippo Menczer, and Alessandro Flammini, Political polarization on Twitter,

Fifth international AAAI conference on weblogs and social media, 2011.

[81] Peter J. Coughlin, Unidimensional median voter results in probabilistic voting

models, Economics Letters 14 (1984), no. 1, 9–15.

157



BIBLIOGRAPHY

[82] , Probabilistic voting theory, Cambridge Univ. Press, 1992.

[83] Iain D. Couzin, Christos C. Ioannou, Güven Demirel, Thilo Gross, Colin J.
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[289] György Szabó, Jeromos Vukov, and Attila Szolnoki, Phase diagrams for an

evolutionary prisoner’s dilemma game on two-dimensional lattices, Physical Re-

view E 72 (2005), no. 4, 047107.

180



BIBLIOGRAPHY
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