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Abstract

To curb the spread of fake news on social media platforms, recent studies have
considered an online crowdsourcing fact-checking approach as one possible inter-
vention method to reduce misinformation. However, it remains unclear under
what conditions crowdsourcing fact-checking efforts deter the spread of mis-
information. To address this issue, we model such distributed fact-checking as
‘peer policing’ that will reduce the perceived payoff to share or disseminate false
information (fake news) and also reward the spread of trustworthy information
(real news). By simulating our model on synthetic square lattices and small-
world networks, we show that the presence of social network structure enables
fake news spreaders to be self-organized into echo chambers, thereby providing a
boost to the efficacy of fake news and thus its resistance to fact-checking efforts.
Additionally, to study our model in a more realistic setting, we utilize a Twit-
ter network dataset and study the effectiveness of deliberately choosing specific
individuals to be fact-checkers. We find that targeted fact-checking efforts can
be highly effective, seeing the same level of success with as little as a fifth of
the number of fact-checkers, but it depends on the structure of the network in
question. In the limit of weak selection, we obtain closed-form analytical condi-
tions for critical threshold of crowdsourced fact-checking in terms of the payoff
values in our fact-checker/fake news game. Our work has practical implications
for developing model-based mitigation strategies for controlling the spread of
misinformation that interferes with the political discourse.

Significance Statement

Modern social media has been inundated by false and misleading headlines and
articles. We advance the study of this fake news by developing a game-theoretic
model of the spread of fake news in a social network. We are able to test the
effectiveness of peer fact-checkers and we estimate that the structure of a social
network increases misinformation’s resistance to fact-checking in a population by
a factor of two to three. Additionally, we find that depending on the structure
of the network, carefully choosing which individuals are equipped to be fact-
checkers can significantly boost fact-checking efforts.
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1 Background

In a social media environment that encourages sharing and reposting flashy
headlines instead of researching and developing a nuanced understanding of a
topic, social media platforms seem to facilitate the spread of fake news [1, 2, 3].
Social influence, following, and unfollowing can create polarized and segregated
structure in social media like Twitter [4]. These echo chambers create conditions
for confirmation bias and selection bias [5] and thus can facilitate the spread of
misinformation [6]. Moreover, during the COVID-19 pandemic, misinformation
has severely impacted our efforts to control the pandemic (“misinfodemics”)
[7, 8, 9].

In the context of modern politics, partisanship has come to dominate the
political sphere and stall political consensus, both amongst the political elite
and the general population [10, 11, 12, 13, 14]. It has become a major research
concern to effectively understand circumstances that will lead to consensus of
opinion and others that will lead to divergence of opinion and a weakening of
information transfer [15, 16, 17, 18, 19, 20, 21].

In the last decade, the study of misinformation has grown rapidly in an
effort to alienate these societal ills. Ref. [2] traced the lifecycle of 17 popular
political rumors that circulated on Twitter over 13 months during the 2012
U.S. presidential election; they found that misinformation tends to come back
multiple times after the initial publication, while facts do not. Using massive
Twitter datasets, it is recently reported that the spread of true and false news
follow distinctive patterns: falsehood diffused significantly faster, deeper, and
more broadly than the truth in all categories of information [3]. Because almost
all news media is advertiser-driven, content publishers are incentivized to spread
false information to increase engagement from consumers [22], so we will focus
on fact-checking at the level of the individual consumer.

Ref. [23] investigated opinion formation on dynamic social networks through
the lens of coevolutionary games [24], and using the voting records of the United
States House of Representatives over a timespan of decades, the work presented
and validated the conditions for the emergence of partisan echo chambers [12,
13, 25]. Integrating publicly available Twitter data with an agent-based model
of opinion formation driven by socio-cognitive biases, Ref. [4] recently found that
open-mindedness of individuals is a key determinant of forming echo chambers
under dueling campaign influence.

While it is hard to measure the exact impact of these false stories, it is clear
that something about the structure of social media (e.g. reposting/retweeting
network) is allowing their spread to continue relatively unchecked. To attempt
to quantify the effect network structure has on the proliferation of fake news, we
develop a mathematical model of fake news sharing and test it on a variety of
social networks. There is an established tradition of using spatial game theory to
study problems of coordination and collective action, particularly the Prisoner’s
Dilemma. The structure of a network has been found to impact the behavior of
the system to reinforce good behavior [26, 27], and the evolution of the system
can exhibit interesting spatial phenomenon that is not present in the well-mixed
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case [28]. We use a similar strategy to study the spread of fake news through a
social network.

A recent study suggested using an online crowdsourced fact-checking ap-
proach as one possible intervention to reduce misinformation [29]. Inspired by
this empirical work, here we study spatial games of fake news by modeling dis-
tributed fact-checking efforts like ‘peer policing’ which will reduce the perceived
payoff to share or disseminate false information (fake news) while rewarding the
spread of trustworthy information (real news). Fact-checkers will be placed into
the population to model the effect of peer policing efforts. Our agent-based
model, where individuals can share real or fake news depending on the behavior
and success of their neighbors, is studied with simulations as well as a rigorous
mathematical analysis. We find that the presence of subtle network structures
known as echo chambers impede crowdsourced fact-checking, thereby requiring
a much higher critical distribution threshold of fact-checkers across the popula-
tion.

2 Methods & Model

The foundation of our model is inspired by the virtual interactions that occur
repeatedly on online social media sites. To begin, an individual posts a news
story (either true or false) for all of their friends or followers to see. Those who
believe the story is true can react positively to the post by liking or sharing,
while those who disagree may simply ignore the post or even attempt to debunk
a false story by pointing out flaws or sharing a link to a fact-checking website,
potentially causing embarrassment and inflicting a penalty on those who share
fake news.

A key focus of this chapter is peer fact-checking as opposed to institutional
fact-checking. Recent research shows that “inoculation” with exposure to a
weakened version of misleading arguments (similar to vaccination ideas) is ef-
fective at reducing susceptibility to misleading persuasion and thus confers psy-
chological resistance to fake news [30, 31, 32, 33]. By training some subset of the
population to identify and respond to fake news, we can create a decentralized
fact-checking system where innoculated individuals will be positioned to apply
pressure to their social neighbors that share fake news while also supporting
their real news sharing neighbors. Inspired by “zealot models” from the field
of opinion dynamics [20], we assume that these fact-checkers will never change
belief because of the behavior of those around them, having been successfully
inoculated against fake news,

Consider a network with a two-layer structure: the spreader layer describes
the information sharing dynamics among spreaders of real news vs. fake news.
Unfortunately, fake news tends to spread more effectively than real news on
social media [3], so our model gives a higher payoff to individuals sharing fake
news in simulations (our analytic results, on the other hand, work for any set
of prescribed payoffs). If a spreader of real news (labelled A) interacts with
another A, they both receive a moderate payoff; if a spreader of fake news
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(labelled B) interacts with another B, they both receive a slightly larger payoff;
if an A interacts with a B, both receive a very small (or possibly negative)
payoff. To contain the spread of fake news, the natural advantage given to B
players will have to be counterbalanced by a penalty inflicted by fact-checkers.
The second layer of the social network describes the enforcement infrastructure
where these designated fact-checkers, denoted by C, perform distributed fact-
checking to their spreader neighbors: they provide a reward to A and a harsh
penalty to B. We assume the proportion of fact-checkers pC is prescribed and
static, representing the level of innoculation effort. The payoff to fact-checkers
is irrelevant as the fact-checker population is static, so for simplicity we set it to
zero. A selection strength parameter controls how much impact an individual’s
payoff has on her reproductive success in the update step. The payoffs and
selection strength can take arbitrary numerical values, but for the rest of this
paper, unless otherwise noted, we will use a selection strength of β = 0.5 and
the payoff matrix for this symmetric, two-player game will be:




A B C

A 1 0 1
B 0 2 −4
C 0 0 0


 (1)

Notice that in Equation (1), the payoff for fake news is twice the payoff for
real news, but fact-checkers also inflict a stiff punishment.

Over time, if individuals see that only certain types of stories receiving posi-
tive feedback, they may be convinced of the accuracy of those (potentially false)
narratives [34] and begin sharing those same stories themselves (Figure 1c). We
will use a death-birth process for the evolutionary strategy update [26] to cap-
ture this social imitation phenomenon. After computing the expected payoff
πi for every individual i, a focal individual imitates the strategy of one of its
neighbors, chosen with probability proportional to their fitness fi = exp(βπi).
Thus, individuals with high payoff are likely to be selected, but even individuals
with a low payoff due to repeated fact-checks or social isolation could be chosen
to reproduce occasionally.

In our investigation, we use two flavors of this update rule: synchronous
and asynchronous. In the synchronous update, used in our simulations, every
individual simultaneously updates their strategy, while in the asynchronous up-
date, which lends itself to easier mathematical analysis, a single individual is
chosen uniformly at random to update. These two update rules will lead to very
similar outcomes, and the minor differences between them are manifested only
in edge cases that occur rarely. Keeping this in mind, we will treat them as the
qualitatively same process operating on different time scales.

The basic operating procedure for our model is shown in Figure 1. First,
individuals play the fake news game with neighbors by broadcasting a real or
fake post. This post generates positive and negative feedback, which is con-
verted into a fitness. Figure 1c demonstrates the asynchronous update, where
only a single focal individual updates strategy by considering the fitness of all
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Figure 1: Model schematic. We model information sharing and fact-checking
through the lens of spatial games. First, every individual shares news that is
either true (blue) or false (red), shown in (a). In (b), we see a focal individual
receiving positive or negative feedback from her neighbors depending on their
relative beliefs. These information sharing dynamics are modulated by the
presence of crowdsourced fact-checkers (green), characterized by the effect of
their policing (positive or negative) and their static nature. Finally, in (c),
individuals in the spreading layer updates their strategy by copying a neighbor
proportional to fitness.
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neighbors.
Our study of the spread of fake news is focused on three types of networks: a

30 × 30 square lattice [28], Watts-Strogatz small-world networks [35] (also with
N = 900), and a portion of the Twitter follower network [36] (N = 404719).
Our small-world networks are calibrated to have high clustering coefficients and
short path lengths. To accomplish this, we use the following parameters: base
degree is 8 and the rewiring probability is 0.03, giving us approximately 200
shortcuts. The Twitter network is interesting for its size but also its natural
clustering and the gatekeeping individuals that control the flow of information
through the network. Although edges in the network were originally directed,
we symmetrized the network to match the bidirectional flow of information in
our model.

To initialize the system, we assign some fraction pC of the individuals as
fact-checkers, and the rest we set to be A or B players with probability 1

2 .
After initializing the system, we allow it to evolve using the one of the updating
processes described above until all possible players are sharing the same type
of news or a predetermined number of time steps is reached. At the end of the
simulation, the type of news with more sharers is said to be dominant, and if
there are no individuals sharing one type of news, we say that that strategy has
gone extinct and the other strategy has fixated.

3 Results

3.1 Echo Chambers and Critical Fact-checker Density

When there are very few fact-checkers, the natural advantage that fake news
sharers have allows them to drive the real news sharing strategy to extinction.
Similarly, when there is a sufficient fact-checker presence, the risk of punishment
for spreading misinformation is too great and the entire population shares real
news. However, there is a wide range of fact-checker densities where we see the
spontaneous formation of echo chambers in our simulations. We define echo
chambers by their longevity, as either real or fake news goes extinct unless the
minority strategy manages to form small, highly connected communities that are
secured from invasion by the majority strategy. For additional discussion about
the longevity of these pseudo-steady states, see the Supplementary Information.
Figure 2 shows examples of these echo chambers on the three different network
topologies we studied.

Once they form, these echo chambers are incredibly resistant to invasion,
resulting in a pseudo-steady state that cannot last forever, but will take an
extremely long time to break down. After forming in a less than 100 time steps,
these echo chambers remained largely unchanged for over one million time steps
in our longest simulations. There may be small variation in the pseudo-steady
state when specific individuals change behavior, but as a whole the echo chamber
remains unchanged. Observe in Figure 2a that the only individuals changing
strategy are on the borders of the echo chambers in the system. It is very unlikely
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Figure 2: Echo chambers of fake news spreaders in a majority real news-
spreading population that are isolated from the rest of the population. In (a),
the lightly-colored individuals are those that have changed strategy recently.
The network in (c) is a small breadth-first subgraph of the Twitter network of
approximately 1,000 vertices, but the simulation was run on the entire ≈ 400, 000
vertex network (see Methods & models).

that a small perturbation on the border will result in any change to the interior of
the echo chamber. Individuals on the periphery of the echo chamber are exposed
to both views and may change strategy occasionally. Those in the interior are
surrounded by like-minded individuals and have high fitness, which allows them
to reinforce minority behavior by the more exposed peripheral individuals.

Unsurprisingly, the density of fact-checkers determines which type of news
sharing is the majority and which is the minority, trapped in small and isolated
communities. Figure 3 shows how the long-term behavior of the system changes
as the density of fact-checkers grows. When a critical number of fact-checkers is
reached, the probability of success for real news sharing increases dramatically.
This critical density is different for different network types: pc ≈ 0.235 on
the square lattice, pC ≈ 0.2 for small-worlds, and pC ≈ 0.275 for the Twitter
network. These results come from simulating 50 populations at 20 different,
evenly spaced fact-checker densities. At 5,000 time steps, a pseudo-steady state
was declared, except the Twitter simulations which ended at 500 time steps for
computational reasons.

As a note, observe that for very high values of pC , the probability that
real news dominates actually decreases. This seemingly paradoxical result can
be explained by noting that for such high values of pC , the spreader layer of
the network has completely broken down into small, disconnected components.
These components typically have only one or two individuals, and therefore com-
pletely constrained by their initial conditions. Selection cannot help individuals
select more beneficial strategies if there are no neighbors to copy. Fortunately,
when selecting fact-checkers randomly, this only occurs with unrealistically high
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values of pC .
We can compare these results to the simple case of an infinite, well-mixed

population evolving according to replicator dynamics [37]. After initializing
with some fraction pC of fact-checkers and the rest of the population evenly
divided between real and fake news (so pA = pB = 1−pC

2 ), we consider the
relative payoffs of A and B players when choosing a random opponent under
the payoff matrix (1).

The expected payoff for an A player is

fA = 1(pA) + 1(pC) =
1 − pC

2
+ pC =

1 + pC
2

(2)

and the expected payoff for a B player is

fB = 2(pB) − 4(pC) = 2
1 − pC

2
− 4pC = 1 − 5pC (3)

Because this is a coordination game, if A has a higher initial fitness, the
proportion of A players will grow and fA will get only get larger while fB gets
smaller, until B becomes functionally extinct. Therefore, the fixation of A is
favored over B if fA > fB , which can be solving for pC using the equations
above. We get the critical threshold for pC , that is

pC >
1

11
. (4)

We conclude that the network structure of the spatial game makes containing
fake news significantly more challenging. In fact, between two to three times
as many fact-checkers are needed to contain the sharing of fake news in small,
isolated echo chambers, and even more fact-checkers are needed to have a good
chance of driving fake news sharing behavior to total extinction.

Our comprehensive simulations using the payoff values in Equation (1) and
the synchronous update rule confirm that the formation of echo chambers occurs
across a wide range of payoff values, selection strengths, and network structures.
Local variation in fact-checker density means in some areas there are no fact-
checkers (leaving room for a fake news echo chamber) and in others they make a
fact-checking wall which becomes more and more difficult for fake news sharers
to penetrate as selection strength grows.

3.2 Targeted Fact-checking

So far, we have only considered populations where fact-checkers are placed ran-
domly. However, in almost all networks, some vertices are more centrally located
than others, and this effect is particularly pronounced in naturally formed so-
cial networks. To improve the effectiveness of crowdsourced fact-checking with
limited resources, it is vitally important to study targeted intervention algo-
rithms by selecting the most central vertices. Once again, we run simulations
with 50 iterations, 20 density values, and a limit of 5,000 (or 500) time steps.
Our results, shown in Figure 4, focus on two measures of network centrality,
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Figure 3: The probability that over half the viable population ends up sharing
real news as a function of fact-checker density for different network topologies.
For very high values of pC , the spreader layer breaks apart into isolated individ-
uals, at which point the dominant strategy is determined more by the random
initialization than selection.
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Figure 4: The probability of real news dominating on small-world networks
and the Twitter network using the degree and betweenness centralities to place
fact-checkers.

degree and betweenness [38], but there are many more centrality measures and
the problem of selecting individuals for optimal fact-checking remains an open
problem. Since all vertices in an infinite square lattice have the same centrality,
our work here is restricted to small-world networks and the Twitter network.

Figure 4 has several interesting features. First, we see that in small-worlds,
using the degree and betweenness centralities have virtually the same perfor-
mance. This is unsurprising as the additional shortcut edges are what create
short path lengths and therefore give those individuals a high betweenness value,
so the two centralities are highly correlated. More surprising is the fact that tar-
geted fact-checking is only marginally more successful than random fact-checker
placement, which can be seen by comparing Figures 3 and 4. This may be due
to the relatively uniform nature of small-world networks, where there is very
little variation in degree from vertex to vertex.

However, the Twitter network has much more diversity in its degree dis-
tribution and here we see a large change between random and targeted fact-
checking. By targeting high degree or betweenness centrality individuals to be
fact-checkers, we quickly separate the spreader layer of the network into dis-
connected singletons and pairs, as these types of networks become disconnected
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very quickly when vertices with high degree are removed from the network [39].
Therefore, it is about equally likely that the initial random distribution will have
more fake or real news sharers, so the probability that real news “dominates”
by being present in over half the viable population hovers around 0.5 for almost
all values of fact-checker density. We observed this effect for high values of pC
in Figure 3.

This suggests that in real world networks, a targeted crowdsourced fact-
checking effort where fact-checkers are also encouraged to share real news with
their neighbors could be highly effective with relatively little collective effort,
as the network structure will actually benefit real news instead of fake news by
removing important vertices that fake news needs to move through to get to the
rest of the population, while still allowing real news to spread. Enhancing our
model by allowing fact-checkers to “pass along” real news between neighbors is
one way to more effectively study targeted fact-checking algorithms.

3.3 Analytic Results under Weak Selection

The selection strength β determines the effect payoff from the fake news game
has on reproductive success. As β approaches zero [40, 26], the evolution of
the system comes to resemble neutral drift, in which individuals choose strategy
with no regard for payoff. In this domain, the pseudo-steady state with its echo
chambers becomes transient and short-lived. In the following section, we derive
analytical results in this limit of weak selection.

Assuming a k-regular network structure like the square lattice, we will use
an extended pair approximation method [41] to study the emergence and spread
of honest behavior. The fixation probability of A is the probability that a pop-
ulation with some initial condition evolves so that the entire viable population
eventually evolves to play A, and we derive a closed-form expression for this
probability in this work. Our aim here is to study the effects of changing the
payoffs for real news, fake news, and fact-checkers, so we will begin with a
general payoff matrix:




A B C

A a b α
B c d γ
C 0 0 0


 (5)

In the limit of weak selection β � 1, we will obtain closed-form analytical
conditions for the fixation probabilities of A and B as functions of these payoff
values.

When we suppose that we begin with a fraction p of A individuals, we
can calculate the expected value mA(p) and variance vA(p) of the change in
abundance of A during the asynchronous update step where a single random
individual considers changing strategy. The fixation probability of A for an ini-
tial fraction p of A players, denoted ρA(p), satisfies the diffusion approximation
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equation for large populations (see [26] for details):

mA(p)
d

dp
ρA(p) +

(
vA(p)

2

)
d2

dp2
ρA(p) = 0 (6)

with the boundary conditions ρA(0) = 0 and ρA(1) = 1. This equation has
closed-form solution, and thus we can obtain an exact formula for ρA.

Our derivation of the following explicit expressions for the fixation probabil-
ities in terms of the payoff values, lattice degree k, and fact-checker density pc,
is detailed in the Supplementary Information. For small values of p:

ρA(p) ≈ p+
βNp(1 − p)

6k
(−u1 − 3u2) (7)

ρB(p) ≈ p+
βNp(1 − p)

6k
(−w1 − 3w2) (8)

where u1 = (a − b − c + d)
(

1 − k2 − 1+k
(pC−1)(1−pC)

)
, u2 = −a + b + c − d −

ak + bk − bk2 + dk2 + (k − 1)
(
c + (b − α + γ)k − d(1 + k)

)
pC , w1 = u1, and

w2 = −(u1 + u2).
In particular, we are interested in the emergence of new behavior in a pre-

viously homogeneous population. We calculate the fixation probability ρA of a
single initial A player, called the invasion probability, and derive the conditions
for truthful behavior to be favored, that is, when ρA > 1/N where N is the
size of the population. We also repeat the process for a single B player. Using
Equations (7) and (8), we examine the effect pC and γ, the punishment defec-
tors suffer from fact-checkers, have on the invasion probabilities of real and fake
news.

This allows us to determine the conditions under which fact-checking will
be effective at stemming misinformation and quantify how steep the penalty γ
needs to be for a given proportion of fact-checkers, pC , in the system. In Figure
5a, we see that for strong penalties, γ < −4, only a fifth of the population or
less needs to be fact-checkers for selection to favor real news. However, as γ
gets closer to zero, the number of fact-checkers need goes up to about half the
population. The green region of the pC − γ plane shows where selection favors
fake news; this only happens when there are very few fact-checkers. Notice that
there is a wide region in orange where selection does not favor invasion by real
or fake news. This is because the fake news game is a coordination game that
tends to put minorities (like a single invading mutant) at a disadvantage. These
analytic approximations closely match extensive simulations, as shown in Figure
5b.

4 Discussion and Conclusion

This work adds to the growing body of research surrounding fake news, echo
chambers, and fact-checking and we believe that this work has immediate im-
plications for the study of misinformation. We have shown that the spatial
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Figure 5: The invasion probabilities of real and fake news spreaders in the limit
of weak selection using payoff values from (1), except for γ which varies from
0 to −8. In (a), we see what regions of the pC − γ plane give true stories
an advantage (blue region), false news an advantage (green region), or neither
(orange regions). In (b), we see an approximation of the invasion probability
for a single real news sharer from simulations, when pC = 0.2 and β = 0.0001.
These simulation results intersect the threshold line 1

N ≈ 0.0014 close to where
it was predicted by the analytic results, indicated by the arrow.
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structure of social networks tends to favor the spread of fake news, but by
carefully selecting fact-checkers, that same structure can be used to combat
misinformation by amplifying the effects of fact-checking.

Our analytic results allow us to easily test potential combinations of reward
and punishment and use both “carrots and sticks” to encourage real news and
dampen fake news. Like previous work studying public goods games, we see that
a strong punishment of defectors is effective at stopping bad behavior [42, 43, 44].

Future work combining potential experimental behavior data [34] with our
present model will help incorporate relevant social network and psychological
factors in our research. In particular, the constants in the payoff matrix and the
selection strength were chosen fairly arbitrarily. Analyzing real-world data may
allow us better estimates of some of these values, which in turn can give better
actionable advice about how to actually control the spread of fake news. We
would also like to analyze preexisting data sets or create new empirical studies to
confirm our predictions regarding the effects that the rewards and punishments
of sharing real and fake news have on the ability of fake news to spread through
a population. As an example, perhaps placing fact-checking comments at the
top of any fake news threads would sufficiently increase the punishment suffered
by fake news’s sharers to prevent its spread.

Recent theoretical research has demonstrated that partisan bias [45] and in-
formation cascades [46] are two possible explanations for the formation of echo
chambers. Our work here shows that the spatial distribution of fact-checkers
can contribute to echo chamber creation. This work only represents the first
steps towards understanding how fact-checkers impact echo chamber formation.
These echo chambers require certain conditions to form, including an appropri-
ate selection strength, but there is much we still do not understand. Preliminary
results show that the formation of resilient echo chambers is dependent on the
type of network used. While social media sites do resemble lattices or small
worlds in some respects, there are other properties of social networks that may
be more or less conducive to echo chamber formation.

Extensions of our present work on targeted fact-checking efforts will likely
lead to useful insights for optimizing field deployment of crowdsourcing fact-
checking. There will be a good deal of further work to do, for example, on using
other network topologies and other targeting centralities. In addition, the use
of larger network data sets will give us more realistic behavior as there may be
large-scale social network features essential to the development of echo chambers
that are not captured in any of the network models we used.

Last but not least, our present work will help stimulate future work ex-
tending targeting algorithms to multiplex networks that take into account the
fact that the interconnected ecosystems of social media platforms enable multi-
channel communication and spillover from one platform to the other. In doing
so, we hope to develop mechanistic models that allow us to explore realistic
extensions incorporating social psychological factors such as heterogeneity of
social influence, repeated exposure, and pre-existing beliefs.

14



5 References

References

[1] David M. J. Lazer, Matthew A. Baum, Yochai Benkler, Adam J. Berinsky,
Kelly M. Greenhill, Filippo Menczer, Miriam J. Metzger, Brendan Ny-
han, Gordon Pennycook, David Rothschild, Michael Schudson, Steven A.
Sloman, Cass R. Sunstein, Emily A. Thorson, Duncan J. Watts, and
Jonathan L. Zittrain. The science of fake news. Science, 359(6380):1094–
1096, 2018.

[2] Jieun Shin, Lian Jian, Kevin Driscoll, and François Bar. The diffusion of
misinformation on social media: Temporal pattern, message, and source.
Computers in Human Behavior, 83:278–287, 2018.

[3] Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of true and false
news online. Science, 359(6380):1146–1151, 2018.

[4] Xin Wang, Antonio D. Sirianni, Shaoting Tang, Zhiming Zheng, and Feng
Fu. Public discourse and social network echo chambers driven by socio-
cognitive biases. Physical Review X, 10(4):041042, 2020.

[5] Keith T. Poole and Howard Rosenthal. A spatial model for legislative roll
call analysis. American Journal of Political Science, 29(2):357–384, 1985.

[6] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, An-
tonio Scala, Guido Caldarelli, H. Eugene Stanley, and Walter Quattrocioc-
chi. The spreading of misinformation online. Proceedings of the National
Academy of Sciences, 113(3):554–559, 2016.

[7] Areeb Mian and Shujhat Khan. Coronavirus: The spread of misinforma-
tion. BMC Medicine, 18(1):89, 2020.

[8] Leonardo Bursztyn, Aakaash Rao, Christopher Roth, and David
Yanagizawa-Drott. Misinformation during a pandemic. Working Paper
27417, National Bureau of Economic Research, 2020.

[9] Gordon Pennycook, Jonathon McPhetres, Yunhao Zhang, Jackson G. Lu,
and David G. Rand. Fighting COVID-19 misinformation on social media:
Experimental evidence for a scalable accuracy-nudge intervention. Psycho-
logical Science, 31(7):770–780, 2020.

[10] Clio Andris, David Lee, Marcus J. Hamilton, Mauro Martino, Christian E.
Gunning, and John Armistead Selden. The rise of partisanship and super-
cooperators in the U.S. house of representatives. PLOS ONE, 10(4):1–14,
2015.

[11] Pew Research Center. Partisan conflict and congressional outreach. Tech-
nical report, Pew Research Center, February 2017.

15



[12] Pew Research Center. Political polarization in the American public. Tech-
nical report, Pew Research Center, June 2014.

[13] Pew Research Center. Partisanship and political animosity in 2016. Tech-
nical report, Pew Research Center, June 2016.

[14] Pew Research Center. Few Clinton or Trump supporters have close friends
in the other camp. Technical report, Pew Research Center, August 2016.

[15] Feng Fu and Long Wang. Coevolutionary dynamics of opinions and net-
works: From diversity to uniformity. Physical Review E, 78(1):016104,
2008.

[16] Petter Holme and M. E. Newman. Nonequilibrium phase transition in the
coevolution of networks and opinions. Physical Review E, 74(5):056108,
2006.

[17] Damián H. Zanette and Santiago Gil. Opinion spreading and agent seg-
regation on evolving networks. Physica D: Nonlinear Phenomena, 224(1-
2):156–165, 2006.

[18] Cecilia Nardini, Balázs Kozma, and Alain Barrat. Who’s talking first?
Consensus or lack thereof in coevolving opinion formation models. Physical
Review Letters, 100(15):158701, 2008.

[19] Noah E. Friedkin, Anton V. Proskurnikov, Roberto Tempo, and Sergey E.
Parsegov. Network science on belief system dynamics under logic con-
straints. Science, 354(6310):321–326, 2016.

[20] Shaoli Wang, Libin Rong, and Jianhong Wu. Bistability and multistabil-
ity in opinion dynamics models. Applied Mathematics and Computation,
289:388–395, 2016.

[21] Chris G. Antonopoulos and Yilun Shang. Opinion formation in multiplex
networks with general initial distributions. Scientific Reports, 8(1):2852,
2018.

[22] Alexander J. Stewart, Antonio A. Arechar, David G. Rand, and Joshua B.
Plotkin. The coercive logic of fake news. arXiv preprint abs/2108.13687,
2021.

[23] Tucker Evans and Feng Fu. Opinion formation on dynamic networks: Iden-
tifying conditions for the emergence of partisan echo chambers. Royal So-
ciety Open Science, 5(10):181122, 2018.
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Spatial Games of Fake News - Supplementary

Information
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This supplementary information contains some additional exploration of the
fake news spatial game described in the main paper, as well as the derivation of
the invasion probabilities in the limit of weak selection.

1 Echo Chamber Longevity and the Pseudo-steady
State

In this section, we expand our investigation into the role fact-checkers play in
containing the spread of fake news. The density of static fact-checkers has a
significant effect on the formation of echo chambers and which strategy “domi-
nates” by controlling over half the viable population. Fig 1a and 1b show two
examples of this on the square lattice. Different strategies dominate, dependent
on the fact-checker density.

In the main paper, we focused on a critical value of pC at which point selec-
tion favors real news instead of fake. However, there is an additional point to
consider. Instead of simply containing fake news to isolated echo chambers, we
may want to select enough fact-checkers to completely eradicate fake news. On
the other hand, for a sufficiently small number of fact-checkers, it is extremely
likely that eventually the entire population will be sharing fake news. Therefore,
there are actually four different regions of behavior: fake news (B) fixates and
real news (A) goes extinct, fake news has the advantage in the population with
small real news echo chambers, real news has the advantage with small fake
news echo chambers, and real news fixates while fake news goes extinct. This
sequence of behaviors and their probabilities are shown in Fig 1c.

We can see the formation of echo chambers for a wide range of fact-checker
densities, approximately 0.15 to 0.5 in the case of the square lattice with se-
lection strength β = 0.5. We call behavior in this region the pseudo-steady
state because these echo chambers are highly resistant to invasion and thus can
persist for millions of time steps. However, it is not a true steady state because
with an infinite amount of time, eventually the echo chambers will break down
and one strategy will go extinct.
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Figure 1: Panels a and b show echo chambers of real news (blue) or fake news
(red) sharers that are isolated from the rest of the population by a barrier of
fact-checkers (green). Lightly-colored individuals are those that have changed
strategy in the last time step. The plot in (c) used simulations to show how the
long-term behavior changes as the fact-checker density varies, with the arrow
indicating the fact-checker density at which real news has an advantage in a
well-mixed population, pC = 1/11. As the number of fact-checkers increases,
the population moves towards more real news and less false news stories being
shared.
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Figure 2: The characteristic evolution of a 900 individual population with pC =
0.2 over the course of 2000 time steps. In (a), we can see that after a short
chaotic period, the system reaches a pseudo-steady state and the number of
true news sharers is fairly constant except for short bursts of disruption when
clusters of individuals all shift strategy together. In (b), we get a more detailed
look at what happened in the same system by looking at the size of individual
connected components. Around t = 1100, the single large component of real
news sharers splits into two separate components. Then at about t = 1800, the
two components are joined together as a small cluster between them changes
back to sharing real news.
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We can see the resilience of these echo chambers by looking at the number of
real news sharers as a function of time. Figure 2a shows the prevalence of real
news in a single representative simulation. The number of cooperators drops
swiftly at first before stabilizing at around 290 cooperators. There are small
shifts at t ≈ 1100 and t ≈ 1800, but otherwise the population is unchanging
except for minor perturbations on the border of echo chambers. Fig 2b gives
more detail, showing the size of each path-connected component of real news
sharers. By comparing Fig 2a and b, we see that the changes in cooperator
population size corresponds to the large 290-individual echo chamber breaking
into two smaller components, one with ≈ 250 individuals and the other with
≈ 20, and then fusing back together.

On the square lattice, the formation of echo chambers and the pseudo-steady
state seems to occur across a wide range of fact-checker densities. As shown
in the main paper, we also observe echo chamber formation on small-world
networks and the twitter network. However, this is not a uniform property of
all networks. Preliminary results show that the formation of echo chambers and
the critical pC value are dependent on network topology; lattices and small-
worlds are fertile ground for echo chambers, but Erdös-Renýı random graphs
and scale-free networks are not. This leads us to hypothesize that a relatively
high clustering coefficient is essential for the formation of echo chambers. This
intuitively makes sense, as echo chambers are dependent on the feedback loops
possible in cliquish, highly connected communities.

2 Fact-checker Inaccuracy

In reality, fact-checking is subject to human errors. Some fake news occasionally
goes unnoticed and endorsed, and some real news is temporally labelled to
be fake by well-meaning fact-checkers. When relying on citizen fact-checkers
instead of professional journalists for peer policing purposes, the accuracy of
fact-checking will inevitably go down as laymen are less prepared to accurately
assess fake news. Suppose that fact-checkers have an accuracy in their policing of
λ ∈ [0, 1]. With probability λ, they correctly assess a post’s accuracy and reward
benefit α to true news spreaders and penalty γ to fake news spreaders. With
probability 1 − λ, an error occurs, leading to the opposite payoff assignments.
Using the same method we use to calculate the analytic fixation probabilities,
we will quantify the precision threshold required for fact-checkers to ensure fair
and transparent policing of wrongdoers while in favor of real news spreaders.
For the exact expressions, see the end of the section on analytic derivations
below. Figure 3 shows the relationship between invasion probabilities on the
pC − λ plane when using the following payoff matrix:




A B C

A 1 0 1
B 0 2 −4
C 0 0 0


 (1)
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Figure 3: The results of varying the accuracy of fact-checkers. In (a), we see the
where in the pC − λ plane selection favors true news (blue), false news (green),
or neither (orange). However, when the density of fact-checkers is very high and
fact-checkers are not very accurate, selection can actually favor invasion by true
or false news, as shown in (b). This is surprising because this is a coordination
game and it is rare for selection to favor invasion by both strategies. However,
this combination of parameter values is highly unrealistic and would never occur
in real life.

In Fig 3a, we see that when λ < 0.5, selection always favors fake news. This
is unsurprising, as it means that the supposed fact-checkers are actually giving
more benefit to fake news spreaders than real news spreaders. However, there
is a clear buffer in which fact-checkers can be accurate only about 80% of the
time without necessitating a drastic increase in the critical fact-checker density
for selection to favor real news.

Fig 3b shows an interesting phenomenon. When fact-checker accuracy is
very close to 1/2 and the number of fact-checkers is extremely high, selection
actually favors invasion by both real and fake news. This is surprising because
this real vs fake news game is a coordination game which tends to oppose in-
vading mutants. While this set of parameters is unrealistic and would never
appear in any real population, it still demonstrates an interesting property of
the dynamics of coordination games in the presence of zealots or extreme envi-
ronmental conditions.
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3 Derivation of Analytic Results

In this section, we derive the invasion probabilities of single cooperators and
defectors in the limit of weak selection. We begin by introducing the necessary
notation. We have N individuals on a network, each with k neighbors, and they
play a game with a general payoff matrix




A B C

A a b α
B c d γ
C 0 0 0


 (2)

pA, pB , and pC are the proportions of A, B, and C players. Similarly, pS1S2
is

the proportion of edges leading from an individual playing S1 to an individual
playing S2, where S1 and S2 can be A, B, or C. We will also be interested
in the conditional probability of finding an individual playing S2 by following
a random edge that starts at an individual playing S1, which will be denoted
qS2|S1

. By basic probability, qS2|S1
=

pS1S2

pS1
.

For an individual playing Si, πSi
is the total payoff, or the sum of the payoffs

from each interaction with a neighbor. The payoff of any A or B individual is
dependent on the neighbors’ strategies, but we are interested in the expected
payoff which only depends on the quantities already listed. With selection
strength β, fSi

= eβπSi is the fitness of an individual playing Si.
We have two normalization conditions that ensure that all our probabilities

sum to 1:
pA + pB + pC = 1 (3)

pAA + pAB + pAC + pBA + pBB + pBC + pCA + pCB + pCC = 1 (4)

Additionally, there are three symmetry conditions. These need not be true
in general, but because the network we are using is undirected, an edge from S1

to S2 is also an edge from S2 to S1. Therefore:

pAB = pBA (5)

pAC = pCA (6)

pBC = pCB (7)

Finally, we have three consistency conditions:

pA = pAA + pAB + pAC (8)

pB = pBA + pBB + pBC (9)

pC = pCA + pCB + pCC (10)

With all these conditions, we can simplify the system until there are only
five independent variables: pA, pB , pAA, pBB , pCC . The other four variables
can be solved in terms of these five:

pC = 1− pA − pB (11)
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pAB = pBA = 1/2
[
(pA − pAA) + (pB − pBB)− (pC − pCC)

]
(12)

pAC = pCA = 1/2
[
(pC − pCC)− (pB − pBB) + (pA − pAA)

]
(13)

pBC = pCB = 1/2
[
(pB − pBB) + (pC − pCC)− (pA − pAA)

]
(14)

Now we are ready to derive differential equations for the systems evolution
in time.

3.1 Pair Approximation

The game between real and fake news is a coordination game, and because of
this, individuals will tend to form clusters of like-minded individuals, as observed
in simulations. However, because of this, the probabilities along two successive
edges are not independent. That is to say, if pS1S2S3

is the probability of starting
at an S1 player, following a random edge to an S2 player, and then following
another random edge to an S3 player, we do not get that

pS1S2S3
=
pS1S2

pS2S3

pS2

(15)

However, this makes studying the system untenable. Pair approximation al-
leviates this problem by making the simplifying assumptions that edges are
independent and therefore Equation (15) holds.

In the death-birth process, an individual is chosen to “die” and a neighbor
is chosen to replicate and take the deceased individuals place. However, if the
two individuals are playing the same strategy, nothing in the population will
have changed. The only way the system changes is if an A individual takes the
place of a B individual or vice versa, so we focus on the frequency of these two
events to study the system.

We use the modified update step where only one individual is replaced per
time step. This slows down the system’s evolution by a factor of 1

N , but it has
very little effect on the behavior of the system, and it makes the system much
easier to approach analytically. With a discrete time step ∆t = 1

N so that one
individual is replaced per time step, the differential equations for pA and pAA
are:

˙pA =
1

N

E(∆nA)

∆t
= E(∆nA) (16)

˙pAA =
2

kN

E(∆nAA)

∆t
=

2

k
E(∆nAA) (17)

We first focus on computing E(∆nA). Because only one individual updates
at a time, E(∆nA) = P (∆nA = 1)− P (∆nA = −1). nA increases by one when
a B player is replaced by an A player, and nA decreases by one when an A
player is replaced by a B player. We now derive the probability of an A player
replacing a B player. The probability of B invading A follows by symmetry.
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The B player that is being replaced has k neighbors, each of which can be
an A, B, or C player. Specifically, the focal B player has kAB A neighbors, kBB
B neighbors, and kCB C neighbors with probability

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B (18)

and there is always the restriction that kAB + kBB + kCB = k.
Each of these neighbors has k−1 neighbors (not including the focal B player)

that are also multinomially distributed. An A-playing neighbor will have k′AA A

neighbors, k′BA B neighbors, and k′CA C neighbors with probability

(k − 1)!

k′AA!k′BA !k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A (19)

Here we used pair approximation, because we ignore the higher-order terms that
might arise knowing that the A player already has a B neighbor.

Likewise, the B and C players neighboring the focal B player have neighbors
whose strategies are multinomially distributed. To determine the strategy the
focal B player will choose to imitate, we need to know the payoffs of all of the
neighbors.

An A neighbor of the focal B player who has k′AA A neighbors, k′BA B neigh-

bors (not including the focal B player), and k′CA C neighbors has payoff

πA = k′
A
Aa+ (k′

B
A + 1)b+ k′

C
Aα (20)

and fitness
fA(k′

A
A, k

′B
A , k

′C
A) = eβπA (21)

The same quantities for the B and C neighbors work the same way.

πB = k′
A
Bc+ (k′

B
B + 1)d+ k′

C
Bγ (22)

fB(k′
A
B , k

′B
B , k

′C
B) = eβπB (23)

πC = k′
A
C0 + (k′

B
C + 1)0 + k′

C
C0 = 0 (24)

fC(k′
A
C , k

′B
C , k

′C
C) = eβπC = 1 (25)

We are interested in the focal B player being replaced by an A player. Be-
cause individuals choose who to copy proportional to fitness, the probability of
the B player selecting one of its A neighbors is

kABfA
kABfA + kBBfB + kCBfC

(26)

All that remains is to sum over all possible configurations of the B player’s
neighbors and their neighbors and multiply by pB (the probability that a B
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player is selected to update) to get the final probability WAB that a B player
is replaced by an A player:

WAB = pB ·
∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA !k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB !k′BB !k′CB !
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kABfA(k′AA, k
′B
A + 1, k′CA)

kABfA(k′AA, k
′B
A + 1, k′CA) + kBBfB(k′AB , k

′B
B + 1, k′CB)

+ kCBfC(k′AC , k
′B
C + 1, k′CC)

(27)

(Though it is difficult to typeset within the margins, note that this is a
nested sum and not the product of four separate sums.) Likewise, WBA, the
probability of B invading A, is

WBA = pA ·
∑

kAA+kBA+kCA=k

k!

kAA!kBA !kCA !
q
kAA
A|Aq

kBA
B|Aq

kCA
C|A

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA !k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB !k′BB !k′CB !
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kBAfB(k′AB + 1, k′BB , k
′C
B)

kAAfA(k′AA + 1, k′BA , k
′C
A) + kBAfB(k′AB + 1, k′BB , k

′C
B)

+ kCAfC(k′AC + 1, k′BC , k
′C
C)

(28)

Furthermore, when B is invaded by A it increases the number of A − A
pairs by kAB , so we can define φAAB to be the expected value for the change in
A − A edges due to a B player being invaded by an A player. (The subscript
describes the direction of invasion and the superscript determines which pair
it corresponds to, so φAAB means an A player is replacing a B player, and this
term tells us about the change in A−A pairs.) Like in (27), we have
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φAAB = pB ·
∑

kAB+kBB+kCB=k

kAB
k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA !k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB !k′BB !k′CB !
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kABfA(k′AA, k
′B
A + 1, k′CA)

kABfA(k′AA, k
′B
A + 1, k′CA) + kBBfB(k′AB , k

′B
B + 1, k′CB)

+ kCBfC(k′AC , k
′B
C + 1, k′CC)

(29)

Note that (29) only differs from (27) in a single kAB term in the first line,
which is there because we are interested in the expected value of the change in
A − A edges, and there are kAB new A − A edges being formed. Similarly, we
can write down:

φABA = pA ·
∑

kAA+kBA+kCA=k

kAA
k!

kAA!kBA !kCA !
q
kAA
A|Aq

kBA
B|Aq

kCA
C|A

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA !k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB !k′BB !k′CB !
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kBAfB(k′AB + 1, k′BB , k
′C
B)

kAAfA(k′AA + 1, k′BA , k
′C
A) + kBAfB(k′AB + 1, k′BB , k

′C
B)

+ kCAfC(k′AC + 1, k′BC , k
′C
C)

(30)

10



φBAB = pB ·
∑

kAB+kBB+kCB=k

kBB
k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA !k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB !k′BB !k′CB !
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kABfA(k′AA, k
′B
A + 1, k′CA)

kABfA(k′AA, k
′B
A + 1, k′CA) + kBBfB(k′AB , k

′B
B + 1, k′CB)

+ kCBfC(k′AC , k
′B
C + 1, k′CC)

(31)

φBBA = pA ·
∑

kAA+kBA+kCA=k

kBA
k!

kAA!kBA !kCA !
q
kAA
A|Aq

kBA
B|Aq

kCA
C|A

·
∑

k′AA+k′BA+k′CA=k−1

(k − 1)!

k′AA!k′BA !k′CA!
q
k′AA
A|Aq

k′BA
B|Aq

k′CA
C|A

·
∑

k′AB+k′BB+k′CB=k−1

(k − 1)!

k′AB !k′BB !k′CB !
q
k′AB
A|Bq

k′BB
B|Bq

k′CB
C|B

·
∑

k′AC+k′BC+k′CC=k−1

(k − 1)!

k′AC !k′BC !k′CC !
q
k′AC
A|Cq

k′BC
B|Cq

k′CC
C|C

· kBAfB(k′AB + 1, k′BB , k
′C
B)

kAAfA(k′AA + 1, k′BA , k
′C
A) + kBAfB(k′AB + 1, k′BB , k

′C
B)

+ kCAfC(k′AC + 1, k′BC , k
′C
C)

(32)

Once we have these quantities (Equations (27) - (32)), we have expressions
for all of our independent variables.

˙pCC = 0 (33)

˙pA = − ˙pB = WAB −WBA (34)

˙pAA =
2

k
(φAAB − φABA) (35)

˙pBB =
2

k
(φBBA − φBAB) (36)
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3.2 Weak Selection

Even with the substantial simplification from pair approximation, the previous
results are too complicated and unwieldy to be useful by themselves. Because of
compounding sums, directly calculating the derivatives requires adding millions
of terms if k = 8. Furthermore, the pair approximation means that we lose the
information critical to clustering, and therefore the analytic results here will fail
to capture the pseudo-steady states that we observe when β is much larger than
zero.

We can sidestep both these issues by working in the limit of weak selec-
tion. In weak selection, the success or failure of an individual in the fake news
game is only one small factor in the individual’s success, and fitnesses are much
more uniform across the population. When β is close to zero, we can throw out
higher order terms which simplifies the expression, and when β is close to zero,
the pseudo-steady states cannot exist anyways because the system behaves ap-
proximately like neutral drift. Taking the Taylor expansion of the exponential
in equations (21) and (23) with respect to β and only keeping the low order
terms, what is left is mathematically tractable. We have expressions for each
of WAB ,WBA, φ

A
AB , φ

A
BA, φ

B
BA, φ

B
AB . We manipulate each separately and bring

them back together at the end.

3.3 WAB and WBA:

Equation (27) gives us an expression for WAB . The fact-checkers playing C have
constant fitness, fC = 1, and no other terms in the last line of (27) depend on the
neighbors of C players, so we can pull it all through the final sum which collapses
to 1 because it is the sum of the probabilities of all possible configurations of
neighbors, which must be 1. Therefore,

WAB = pB ·
∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

kA
′

A +kB
′

A +kC
′

A =k−1

(k − 1)!

kA
′

A !kB
′

A !kC
′

A !
q
kA

′
A

A|Aq
kB

′
A

B|Aq
kC

′
A

C|A

·
∑

kA
′

B +kB
′

B +kC
′

B =k−1

(k − 1)!

kA
′

B !kB
′

B !kC
′

B !
q
kA

′
B

A|Bq
kB

′
B

B|Bq
kC

′
B

C|B

· kABfA(kA
′

A , kB
′

A + 1, kC
′

A )

kABfA(kA
′

A , kB
′

A + 1, kC
′

A ) + kBBfB(kA
′

B , kB
′

B + 1, kC
′

B ) + kCB

(37)
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Then, using the Taylor expansion for the exponentials in fA and fB but only
keeping the low order terms of β, we have

kABfA(kA
′

A , kB
′

A + 1, kC
′

A )

kABfA(kA
′

A , kB
′

A + 1, kC
′

A ) + kBBfB(kA
′

B , kB
′

B + 1, kC
′

B ) + kCB

≈ kAB
(
1 + β(akA

′
A + b(kB

′
A + 1) + ckC

′
A )
)

kAB
(
1 + β(akA

′
A + b(kB

′
A + 1) + αkC

′
A )
)

+ kBB
(
1 + β(ckA

′
B + d(kB

′
B + 1) + γkC

′
B )
)

+ kCB

=
kAB(1 + βu1)

k + β(kABu1 + kBBu2)

≈ kAB(1 + βu1)[
1

k
− kABu1 + kBBu2

k2
β]

≈ kAB
k

+ β[
kABu1
k
− kAB

kABu1 + kBBu2
k2

]

(38)

where u1 = akA
′

A + b(kB
′

A + 1) +αkC
′

A and u2 = ckA
′

B + d(kB
′

B + 1) + γkC
′

B . By
carefully pulling terms through the sums, we have the following identities:

∑

kA
′

A +kB
′

A +kC
′

A =k−1

(k − 1)!

kA
′

A !kB
′

A !kC
′

A !
q
kA

′
A

A|Aq
kB

′
A

B|Aq
kC

′
A

C|Au1

= a(k − 1)qA|A + b
(
(k − 1)qB|A + 1

)
+ α(k − 1)qC|A

= EA + b

(39)

∑

kA
′

B +kB
′

B +kC
′

B =k−1

(k − 1)!

kA
′

B !kB
′

B !kC
′

B !
q
kA

′
B

A|Bq
kB

′
B

B|Bq
kC

′
B

C|Bu2

= c(k − 1)qA|B + d
(
(k − 1)qB|B + 1

)
+ γ(k − 1)qC|B

= EB + d

(40)

Notice that EA and EB are the expected payoffs for A and B players from
k − 1 neighbors. Using these identities on our equation for WAB , we get that

WAB = pB ·
∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
[
kAB
k
− β k

B
Bk

A
B

k2
(EB + d) + β

kAB
k

(EA + b)− β k
A
B
2

k2
(EA + b)

] (41)

Each of these four terms in the brackets can be dealt with separately in
similar fashion:

∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
kAB
k

]
= qA|B (42)
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∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
− β k

B
Bk

A
B

k2
(EB + d)

]

= −β (EB + d)

k2
k(k − 1)qA|BqB|B

(43)

∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
β
kAB
k

(EA + b)

]
= β(EA + b)qA|B (44)

∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

[
− β k

A
B
2

k2
(EA + b)

]

= −β (EA + b)

k2
kqA|B [(k − 1)qA|B + 1]

(45)

Therefore,

WAB = pB

[
qA|B + β

(
(EA + b)qA|B −

EA + b

k
qA|B

− k − 1

k
qA|B

[
(EB + d)qB|B + (EA + b)qA|B

])]
+O(β2)

(46)

Using the same techniques, we can simplify our expression for WBA:

WBA = pA

[
qB|A + β

(
(EB + c)qB|A −

EB + c

k
qB|A

− k − 1

k
qB|A

[
(EB + c)qB|A + (EA + a)qA|A

])]
+O(β2)

(47)

Note immediately that since pBqA|B = pAqB|A, the zero-th order terms of
WAB and WBA are equal.

3.4 The φs:

The pair derivatives are non-zero, even when β = 0, so we will focus only on
the zeroth order terms, because these will dominate the first-order terms when

14



β is small.

φAAB = pB ·
∑

kAB+kBB+kCB=k

kAB
k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|B

·
∑

kA
′

A +kB
′

A +kC
′

A =k−1

(k − 1)!

kA
′

A !kB
′

A !kC
′

A !
q
kA

′
A

A|Aq
kB

′
A

B|Aq
kC

′
A

C|A

·
∑

kA
′

B +kB
′

B +kC
′

B =k−1

(k − 1)!

kA
′

B !kB
′

B !kC
′

B !
q
kA

′
B

A|Bq
kB

′
B

B|Bq
kC

′
B

C|B

·
∑

kA
′

C +kB
′

C +kC
′

C =k−1

(k − 1)!

kA
′

C !kB
′

C !kC
′

C !
q
kA

′
C

A|Cq
kB

′
C

B|Cq
kC

′
C

C|C

· kABfA(kA
′

A , kB
′

A + 1, kC
′

A )

kABfA(kA
′

A , kB
′

A + 1, kC
′

A ) + kBBfB(kA
′

B , kB
′

B + 1, kC
′

B )

+ kCBfC(kA
′

C , kB
′

C + 1, kC
′

C )

(48)

The zeroth order terms are what is left when β = 0, or when we have neutral
drift. In that case, fA = fB = fC = 1, and most of the sums collapse to 1. We
quickly get that

φAAB =
pB
k

∑

kAB+kBB+kCB=k

k!

kAB !kBB !kCB !
q
kAB
A|Bq

kBB
B|Bq

kCB
C|Bk

A
B

2
(49)

We relabel for notational convenience and readability when evaluating this sum.
Let X = kAB , Y = kBB , Z = kCB . Then the sum is

∑

X+Y+Z=k

k!

X!Y !Z!
qXA|Bq

Y
B|Bq

Z
C|BX

2

=kqA|B
∑

(X−1)+Y+Z=k−1

(k − 1)!

(X − 1)!Y !Z!
qX−1A|B qYB|Bq

Z
C|B(X)

=kqA|B
∑

(X−1)+Y+Z=k−1

(k − 1)!

(X − 1)!Y !Z!
qX−1A|B qYB|Bq

Z
C|B(X − 1)

+ kqA|B
∑

(X−1)+Y+Z=k−1

(k − 1)!

(X − 1)!Y !Z!
qX−1A|B qYB|Bq

Z
C|B

=kqA|B
(

(k − 1)qA|B
∑

(X−2)+Y+Z=k−2

(k − 2)!

(X − 2)!Y !Z!
qX−2A|B qYB|Bq

Z
C|B + 1

)

=kqA|B
(

(k − 1)qA|B + 1
)

(50)

Immediately, we get,

φAAB = pBqA|B
(

(k − 1)qA|B + 1
)

+O(β) (51)
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The other φ terms are calculated in the same way. They are:

φABA = pA(k − 1)qA|AqB|A +O(β) (52)

φBBA = pAqB|A
(

(k − 1)qB|A + 1
)

+O(β) (53)

φBAB = pB(k − 1)qB|BqA|B +O(β) (54)

3.5 The Slow Manifold

With these simplified equations, we can solve the system. Consider the zero-th
order terms, setting β = 0. WAB = WBA, so ṗA = ṗB = ˙pC . Now we address

˙pAA, ˙pBB , and ˙pAB :
With the above derivatives and (12), we get that

˙pAB = −1

2
( ˙pAA + ˙pAA) (55)

By substituting (51) and (52) into (35):

˙pAA =
2

k

[
φAAB − φABA

]

=
2

k

[
pBqA|B

(
(k − 1)qA|B + 1

)
− pA(k − 1)qA|AqB|A

]

=
2

k

[
pBqA|BqA|B(k − 1)− pAqA|AqB|A(k − 1) + pBqB|A

]

=
2

k

[p2AB
pB

(k − 1)− pAApAB
pA

(k − 1) + pAB

]

(56)

Similarly, with (53) and (54) in (36):

˙pBB =
2

k

[
φBBA − φBAB

]

=
2

k

[
pAqB|A

(
(k − 1)qB|A + 1

)
− pB(k − 1)qB|BqA|B

]

=
2

k

[
pAqB|AqB|A(k − 1)− pBqB|BqA|B(k − 1) + pAqB|A

]

=
2

k

[p2AB
pA

(k − 1)− pABpBB
pB

(k − 1) + pAB

]

(57)

Now subtract (57) from (56):

˙pAA − ˙pBB =
2

k

[p2AB
pB

(k − 1)− pAApAB
pA

(k − 1) + pAB

]

− 2

k

[p2AB
pA

(k − 1)− pABpBB
pB

(k − 1) + pAB

]

=
2(k − 1)

k

[p2AB
pB
− pAApAB

pA
− p2AB

pA
+
pABpBB
pB

]
(58)
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When the system is initialized at t = 0, it is well-mixed and pS1S2(0) =
pS1(0)pS2(0) for all strategies S1 and S2. Thus, at t = 0, by equation (58),

˙pAA − ˙pBB = 0. And together with (55), we have

˙pAA = ˙pBB = − ˙pAB (59)

In fact, this will hold for all time steps, because as long as it holds, it will
continue to hold. A sketch of a formal proos is as follows: solve the system with
Euler’s method and take the limit as the discrete time step goes to zero. By the
convergence of Euler’s method, (59) holds for all t.

From this, (13) and (14) show that ˙pAC = ˙pBC = 0. Then,

˙qC|A =
d

dt

pAC
pA

=
˙pACpA − pAC ˙pA

p2A
= 0 (60)

Similarly, ˙qC|B = 0. These results are expected because in neutral drift, the
fact-checkers do not give either strategy an advantage, so fact-checkers will not
naturally attract A players or repel B players.

Because β is very small, the zero-th order terms in ṗAA and ṗBB will go to
zero much quicker than the first order terms in ṗA and ṗB . Set ṗAA = 0:

ṗAA =
2

k

[
pBqA|B

(
(k − 1)qA|B + 1

)
− pA(k − 1)qA|AqB|A

]
= 0 (61)

Rearranging and dividing by 2pAB

k gives

(k − 1)qA|B + 1 = (k − 1)qA|A (62)

Now use the identities qA|B = pA
pB
qB|A and qB|A = 1− qA|A − pC and rearrange

to get

qA|A = pA +
pB

(k − 1)(1− pC)
(63)

A similar procedure with ṗBB = 0 yields

qB|B = pB +
pA

(k − 1)(1− pC)
(64)

These conditions define the slow manifold, where the system changes slowly
due to β being close to zero. The system may start as a well-mixed population,
but it will very quickly approach a state where the above conditions hold, at least
approximately. Notice that the slow manifold is one-dimensional; everything can
be expressed in terms of pA, because pB = 1−pC−pA, and pC will be a constant.

3.6 Fixation Probabilities

Consider a system starting with pA(0) = p and a small time step ∆t in which
we assume one death-birth occurs. Renormalize with pAnew = pAold/(1 − pC)
and pBnew = pBold/(1 − pC) so that pA and pB are between 0 and 1. Now pA
and pB represent the proportion of individuals playing A or B out of all the
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individuals that are capable of changing their strategy (the A and B players).
There is a mean mA(p) and variance vA(p) of ∆pA for a single time step. We
have

mA(p) = E(∆pA) =
1

N
[WAB −WBA] = [WAB −WBA]∆t (65)

vA(p) = E(∆p2A)− E(∆pA)2 = E(∆p2A) +O(β2)

≈ 1

N2
[WAB +WBA] =

1

N
[WAB +WBA]∆t

(66)

The relevant value will be − 2mA(p)
vA(p) , which can be obtained by substituting in

the constraints of the slow manifold: Equations (63) and (64). After substituting
in the expressions for WAB and WBA, simplifying gets us:

− 2mA(p)

vA(p)
=
βN

k
(u1p+ u2) (67)

where

u1 = (a− b− c+ d)(1− k2 − 1 + k

pC − 1
)(1− pC) (68)

u2 = −a+b+c−d−ak+bk−bk2+dk2+(k−1)
(
c+(b−α+γ)k−d(1+k)

)
pC (69)

According to diffusion theory, the fixation probability of A beginning with
pA(0) = p, denoted ρA(p), satisfies the equation

mA(p)
dρA(p)

dp
+
vA(p)

2

d2ρA(p)

dp2
= 0 (70)

This equation is separable and first order with respect to dρA(p)
dp .

ln
dρA(p)

dp
=

∫
−2mA(p)

vA(p)
dp (71)

The low order terms are

dρA(p)

dp
= 1 +

βN

k

(u1
2
p2 + u2p

)
+ c1 (72)

c1 is a constant of integration. Integrating once more gives

ρA(p) = p+
βN

k

(u1
6
p3 +

u2
2
p2
)

+ c1p+ c2 (73)

Using the boundary conditions ρA(0) = 0 and ρA(1) = 1 to solve for the con-
stants of integration, we get

ρA(p) =p+
βN

k

(u1
6
p3 +

u2
2
p2 − (

u1
6

+
u2
2

)p
)

=p+
βNp(1− p)

6k

(
− 3u2 − u1(1 + p)

) (74)
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When p� 1, such as when p = 1/N for invasion probabilities, (74) becomes

ρA(p) ≈ p+
βNp(1− p)

6k

(
− 3u2 − u1

)
(75)

We can use this work to calculate the fixation probability for the B strategy,
as well. For a given pA and pB with pA + pB = 1, mB(p) = −mA(1 − p) and
vB(p) = vA(1− p). Therefore

−2mB(p)

vB(p)
=

2mA(1− p)
vA(1− p) = −βN

k

(
u1(1−p)+u2

)
=
βN

k

(
u1p−(u1+u2)

)
(76)

From this, as in (75),

ρB(p) = p+
βN

k

(w1

6
p3 +

w2

2
p2− (

w1

6
+
w2

2
)p
)
≈ p+

βN

k

(
−w1− 3w2

)
(77)

with w1 = u1 and w2 = −(u2 + u1).

3.7 Fact-checker Accuracy

The adjustment to include a parameter λ to take into account inaccurate fact-
checkers is very simple. Recall that a fact-checker with accuracy λ ∈ [0, 1] gives
benefit α to an A player and penalty γ to a B player with probability λ, and
gives the opposite payoffs with probability 1−λ. Therefore, the expected payoff
an A player receives from a C player is λα + (1− λ)γ and the expected payoff
for a B player is λγ + (1− λ)α.

All the previous work with pair approximation, weak selection, and the
diffusion approximation still hold, but we can replace the old expected payoffs
of α and γ with the new expected payoffs λα + (1 − λ)γ and λγ + (1 − λ)α,
respectively. Conveniently, the substitution can be done at the very end, where
α and γ appear as coefficients in Equation (69).
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