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Abstract
We introduce a new framework to study the group dynamics and game-theoretic con-
siderations when voters are allowed to trade votes. This model advances prior work
by considering vote-for-vote trades in a low-information environment where voters
do not know the preferences of their trading partners and do not abstain from voting.
All voters draw their preference intensities on two issues from a common probability
distribution and then consider offering to trade with an anonymous partner. The result
is a strategic game between two voters that can be studied analytically. We compute
the Nash equilibria for this game and derive several interesting results involving sym-
metry, group heterogeneity, and more. This framework allows us to determine that
trades are typically detrimental to the welfare of the group as a whole, but there are
exceptions. We also expand our model to allow all voters to trade votes and derive
approximate results for this more general scenario. Finally, we emulate vote trading
in real groups by forming simulated committees using real voter preference intensity
data and computing the resulting equilibria and associated welfare gains or losses.

1 Introduction

For good reason, majority rule is the most widely-used decision rule for groups to con-
solidate members’ preferences into a single selection, particularly for binary choices.
This process is anonymous, decisive, and neutral (May 1952), but it does not take into
account voters’ preference intensities; two voters that care deeply may be outvoted by
three relatively ambivalent voters.While somemay argue that this is by design (Bouton
et al. 2021), others conclude that sufficiently motivated minorities should be allowed
to exert an oversized influence on certain issues (Jacobs et al. 2009; Casella 2011).
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Unfortunately, extracting preference intensities from voters is not straightforward,
since they are incentivized to inflate the intensity of all their beliefs and claim that all
issues are of paramount importance. When the group is deciding on multiple issues,
one potential remedy for this shortcoming of majority rule is to allow voters to trade
votes across issues, accumulating extra votes on their most valued issues and giving
up their autonomy on issues they view as unimportant.

The study of vote trading has a long and complicated history that examines many
different forms of voting and exchanging of votes to account for preference intensity
(see Casella and Macé 2021 for a recent review). The central question, approached
from many angles but not completely resolved, is “Does the trading of votes improve
outcomes for the entire group?” The trading of votes-for-votes in a majority rule
system introduces several complications that make votes unlike traditional goods in
a market and require new analyses to make meaningful statements about the value of
any particular trade.

Early theorists intuited that vote trading could address two issues in social choice:
majority cycles and failure to respond to preference intensity (Buchanan and Tullock
1962; Coleman 1966; Mueller 1967), but both of these claims proved false, in general.
The tendency to remove majority cycles was quickly refuted by Park (1967) and
Miller (1977). It took only slightly longer to show that although it is straightforward
to create situations where the vote trading adds value to the group, it is equally simple
to create scenarios where vote trading reduces value or even leads to Pareto inferior
outcomes (Riker and Brams 1973; Ferejohn 1974).

After an initial flurry of activity in the 1970s, the study of vote trading diversified,
studying various properties of vote trading and different mechanisms by which votes
can be traded. One branch looks at vote trading as a dynamical system, studying sta-
bility and the convergence of trading to Condorcet winners (Casella and Palfrey 2019,
2021). There are also other ways in which votes can be exchanged besides the classic
votes-for-votes framework. One line of research has examined “implicit” vote trading
by combiningmultiple issues into a single bundle (Jones et al. 2023; Câmara and Eguia
2017). Another way to trade votes is to exchange them for a numeraire, an alternative
currency, that has value for voters and can be used to buy and sell votes (Casella et al.
2012; Xefteris and Ziros 2017; Lalley andWeyl 2018). Finally, a voter can trade votes
with themselves by shifting votes from one issue to another (Casella 2011; Jackson
and Sonnenschein 2007). Each trading framework differs from vote-for-vote trading
in important ways, and each requires its own analysis.

This paper returns to the classic vote-for-vote model and attempts to study its effect
on group welfare in a probabilistic framework. Samsonov, Solé-Ollé, and Xefteris also
recently looked at trading votes for votes, but in a system where vote count determines
intensity of the reform, removing the payoff discontinuity at the pivotal vote and
transforming the voting system back into a traditional market (Samsonov et al. 2023).

In addressing the question of vote trading’s impact on group welfare, one must first
define group welfare. Early work, driven by economists, tended to focus on Pareto
efficiency, with Ferejohn (1974) going so far as to say “Of course Mueller may be
using some other notion ofwelfare [other than Pareto improvements] inwhich case it is
not possible to decide the question of whether vote trading can produce welfare gains.”
Like many other papers to study vote trading, this paper uses a utility model where
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each voter gains utility when issues are accepted or rejected by the group (Riker and
Brams 1973; Casella and Palfrey 2019) and we define the welfare of the group to be
the sum of the voters’ final utilities. Because traditional Pareto efficiency approaches
avoid interpersonal comparisons, they are ill-suited to measure the value of a group
decision. The simple sum of individual utilities, on the other hand, has the benefit that
the value for a hypothetical passionate minority is quantified and directly measured
against the indifferentmajority and the value of the group decision on each issue can be
examined in isolation, unlike traditional Pareto efficiency and Condorcet approaches.

Our model incorporates aspects from other papers as well. Like Xefteris and Ziros
(2017), our voters have incomplete information, forcing them to make decisions in
an ambiguous environment. Much of the literature around vote trading assumes that
voters have complete information about the preferences (and preference intensities)
of the entire voting population. This severely restricts the space of rational trades to
only pivotal votes, where the trade actually changes the outcome of the vote, and this
is an assumption worth examining for two reasons. First, even in the most public and
high-profile spaces, voters’ preferences can be kept secret (Ramzy 2017; McPherson
2019). Second, in a system where voters are required to state their preferences, they
will be incentivized to lie about their preferences to make themselves more appealing
as trading partners. Since preferences are often unknown (and when they are known,
they may be falsified), we assume that voters are unsure of the preferences of others.
All voters operate with the same knowledge about the distribution from which voter
utilities are sampled but have incomplete information about the preferences of their
partners. This model of vote trading represents a critical divergence from the majority
of vote trading work. Without complete information, voters must be concerned not
just with the value of the issues they are trading on, but also if their trade will make
any difference at all!

In the main model, our voters are short-sighted, making myopic decisions as if no
other voters will make trades (Casella and Palfrey 2018). We loosen this assumption
in Sect. 4 and approximate the effect of randomly pairing voters and allowing them all
to trade. Myopic trading also means that voters make sincere trades, working to earn
votes that they think are valuable, instead of acquiring votes only to trade them away
later (Iaryczower and Oliveros 2016).

As the toymodel presented in this paper shows, a voter’s decision to offer a potential
trade is dependent on their assessment of what their trading partner’s preferences will
be. Since partner behavior is critical in determining one’s own behavior, we study
this system via Nash equilibria in which no participants can improve their payoff by
changing strategy (Holt and Roth 2004). In this paper, we show how to find these
equilibria and then prove several interesting properties of these vote trading systems.
We also compute the value of vote trading for the group, specifically we find the
probability that a trade has positive expected value for the net utility of the group,
which can range from 0 to 1 depending on the underlying utility distribution.

Finally, we use this new tool on real voter preference intensity data (Studies
2021). Gathering empirical vote trading data is nearly impossible and most empir-
ical vote trading studies are conducted in the laboratory with artificially-assigned
utilities (Casella and Palfrey 2021; Tsakas et al. 2020; Goeree and Zhang 2017).
This analysis illustrates how this analysis of vote trading equilibria can be utilized
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alongside empirical data. In this example, we study the effect of vote trading in a
hypothetical committee made up of real voters deciding on real issues, but this can be
easily repeated on data for real decision-makers, assuming accurate information about
such preferences could be collected.

Thiswork contributes to the study of vote trading in severalways. First, it brings new
mathematical techniques to bear on an old problem. This new perspective showcases
the importance of the utility distribution of voters in determining the value of vote
trading to both the voters and the entire group. Second, by determining which trades
should be offered, we can directly compute the probability that vote trading adds (or
subtracts) value and the expected value of a random trade. While distributions exist
where trading is extremely valuable, in most scenarios, vote trading removes value
from the group by overriding simple majority rule. And third, it demonstrates a new
way to study vote trading, by taking real voter preference data and predicting what
trades would be offered by rational voters.

2 Amodel of vote trading

We begin with a group of n voters vi , where n is odd to avoid ties. Unless otherwise
noted, we use n = 11 in our examples when computing actual values. Since we con-
sider one-for-one trades of votes, only the two issues are ever relevant when deciding
to offer a trade and additional issues do not appear in our analysis, so for all intents
and purposes, we only need to work with two issues, t1 and t2.

The vote trade game takes place in three stages. First, voters are independently
assigned utilities on both issues which can take any value between −1 and 1. Many, if
not most, issues in real life are related, and there can be strong correlations between
issues. We take this into account by drawing utilities ut1 , ut2 jointly according to the
probability distribution f : [−1, 1]2 → R which can take any form desired. This
function is known to all voters and is the factor that will determine the equilibria
we find for these systems. We assume throughout that f is continuous and positive
almost everywhere. We can integrate this function over the four half-squares to get
the probabilities that a random voter has positive or negative value on issues t1 and t2,
denoted Q+

1 , Q
−
1 , Q

+
2 , and Q−

2 .
In the second stage, two voters can offer to trade away their vote on t1 for an

additional vote on t2, trade away t2 for t1, both, or neither. In the rare case that both
voters offer to trade for either issue, the direction of the trade is chosen randomly.

Finally, all voters cast their votes on both issues. The final utility for each voter is
the sum of utilities for all issues that pass with a majority of votes, minus the sum of
all utilities on issues that do not pass. The welfare of the entire group is simply the
sum of individual utilities.

Initially, we consider a game with two players. One player, referred to as the t1
voter, will be trading away their vote on t2 for an additional vote of t1, and the t2 voter
is the opposite. A strategy for a player is a determination, for each utility pair (ut1, ut2),
of if the player is willing to take on the role of the t1 voter, the t2 voter, neither, or
both. We will see in Theorem 1 that the rational strategies can be characterized by
eight parameters, θi , shown in Fig. 1. Each θi is dependent on the ratio of utilities, and
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determines which trades a player will make. If a player’s utility pair falls in one of the
colored Ri regions, they are willing to trade votes in at least one direction.

The payoff for each player is their expected change in utility when all voters have
utilities distributed according to f and the two players trade their votes if their utilities
are compatible, meaning one player’s utility pair falls in the union of R1 through R4
and the other’s is in R5 through R8. We focus on symmetric equilibria, sets of eight θi
values such that if both players are playing this strategy, neither player can improve
their expected payoff by changing any of the θi values.

The calculation varies slightly depending on the sign of ut1 and ut2 , so we break
into the eight regions R1 through R8 which are determined by the angles θ1 through θ8.
Larger θi values indicate more profitable trades and an increased probability of trade.
To get probabilities, we integrate f over all these regions, so Ii = ∫∫

Ri
f (x, y)dxdy.

We show in “Appendix A” that the sign of the expected value of a trade with utilities
u1 and u2 is a function of the ratio u2

u1
. Therefore, while the space of all strategies is

vast, only strategies of the form shown in Fig. 1, straight lines through the origin
defined by the θi parameters, can possibly accept all trades with positive expected
value and reject all trades with negative expected value. Because of this, we restrict
our analysis to the rational strategies of this type.

2.1 Nash equilibria in voting systems

In any vote trading system, there is a trivial Nash equilibrium where no voters offer
any trades (θi = 0). There is no value in being the sole voter who is offering to
trade because no one will ever accept your trade. This trivial equilibrium is not a
strict Nash equilibrium, is present for all underlying joint utility distributions f , and
is not particularly interesting from a voting perspective, so we restrict the rest of our
discussion to non-trivial equilibria where it is possible that a trade occurs that changes
the outcome of the vote.

By finding the ratio of utilities where the value of the trade is zero, we can separate
the trades that have positive and negative value. We simultaneously solve this for all
types of trades for v1 and v2 and the result is a Nash equilibrium.

Theorem 1 Suppose n voters are voting on issues t1 and t2 where utilities for the
two issues are jointly distributed according to f . A strategy (defined by the eight θi
coefficients) is a non-trivial Nash equilibrium if and only if the θi satisfy the following
equations:

θ1 = arctan

(
I6(θ6) + I7(θ7)

I7(θ7) + I8(θ8)

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

)

(1)

θ2 = arctan

(
I5(θ5) + I8(θ8)

I7(θ7) + I8(θ8)

(Q−
1 )

n−3
2 (Q+

1 )
n−1
2

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

)

(2)

θ3 = arctan

(
I5(θ5) + I8(θ8)

I5(θ5) + I6(θ6)

(Q−
1 )

n−3
2 (Q+

1 )
n−1
2

(Q−
2 )

n−1
2 (Q+

2 )
n−3
2

)

(3)
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Fig. 1 Trading regions for the t1 voter (left) and the t2 voter (right) on two issues. For both plots, the utility
on t1 (u1 and u4) is represented by the x-axis, and the utility on t2 (u2 and u3) is represented on the y-axis.
The trades that the t1 voter offers are highlighted in blue, while the t2 voter’s trades are in yellow. Each
region Ri is defined by the angle θi (alternatively, by the slope of the line). These angles will be adjusted
to ensure that all trades in the blue or yellow regions have positive expected value and all trades in white
have negative expected value

θ4 = arctan

(
I6(θ6) + I7(θ7)

I5(θ5) + I6(θ6)

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

(Q−
2 )

n−1
2 (Q+

2 )
n−3
2

)

(4)

θ5 = arctan

(
I3(θ3) + I4(θ4)

I2(θ2) + I3(θ3)

(Q−
2 )

n−1
2 (Q+

2 )
n−3
2

(Q−
1 )

n−3
2 (Q+

1 )
n−1
2

)

(5)

θ6 = arctan

(
I3(θ3) + I4(θ4)

I1(θ1) + I4(θ4)

(Q−
2 )

n−1
2 (Q+

2 )
n−3
2

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

)

(6)

θ7 = arctan

(
I1(θ1) + I2(θ2)

I1(θ1) + I4(θ4)

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

)

(7)

θ8 = arctan

(
I1(θ1) + I2(θ2)

I2(θ2) + I3(θ3)

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

(Q−
1 )

n−3
2 (Q+

1 )
n−1
2

)

(8)

Proof See “Appendix A”. ��
We describe a Nash equilibrium that satisfies Eqs. (1)–(8) as non-trivial, in contrast

to the trivial Nash equilibrium where no one offers any trades. Equations (1)–(8) form
a powerful tool to study equilibria in a vote trading system. For example, we get the
existence of a stable equilibrium almost immediately.

Corollary 1 A non-trivial Nash equilibrium exists.
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Fig. 2 The results of our vote trading analysis on the uniform distribution. a A heatmap of the underlying
distribution, in this case a constant f (x, y) = 1/4. b An equilibrium where the θi satisfy Eqs. (1)–(8). We
call this particular equilibrium, where all θi = π

4 , the naive Nash equilibrium. c, d The trades that improve
group welfare (darkened regions) alongside the trades that are offered by the t1 and t2 voters, respectively

Proof See “Appendix B”, in which we mimic the standard proof for the existence of
a mixed Nash equilibrium (Nash 1951) using Brouwer’s Fixed Point Theorem (Smart
1980) while bounding away from the origin and avoiding the trivial Nash equilibrium.

��
Theorem 1 can also be used to study specific distributions of utilities. For example,

in Fig. 2, we consider the uniform distribution f (x, y) = 1/4. Plugging in f and
solving all eight equations yields the solution θi = π

4 , illustrated in Fig. 2b. We refer
to this equilibrium as the “naive strategy” in which a player should offer to give up
their vote on an issue that matters less in exchange for another vote on an issue that
matters more. This leads us to a powerful symmetry result.

Corollary 2 Suppose f is point symmetric around the origin, meaning f (x, y) =
f (−x,−y). Then the naive strategy is, in fact, a Nash equilibrium.

Proof Suppose θi = π
4 for all i . Since f is point symmetric around the origin, I1(π

4 ) =
I3(

π
4 ), I2(π

4 ) = I4(
π
4 ), I5(π

4 ) = I7(
π
4 ), and I6(

π
4 ) = I8(

π
4 ). These equations make it

straightforward to show that Q+
1 = Q−

1 = Q+
2 = Q−

2 and then Eqs. (1)–(8) follow
easily. ��

Even if f is not point symmetric, we can still compute the Nash equilibrium,
numerically if necessary. Suppose the two issues have utilities distributed according
to the following joint distribution function:

f (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/10 x, y > 0

2/10 x > 0, y < 0

3/10 x, y < 0

4/10 x < 0, y > 0

(9)

The equilibrium for this distribution is shown in Fig. 3. This case differs from
the naive equilibrium because of the white and green regions in Fig. 3b. In the white
regions, it is not worth trading either issue for the other, even though t1 ismore valuable
than t2. In the green regions, it is worth trading either issue for the other. We provide
some intuition for this strange result after another revealing example in Fig. 5.

We present one final claim regarding equilibria of vote trading systems:
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Fig. 3 The results of our vote trading analysis when issues are dependent. a A heatmap of the underlying
distribution, Eq. (9). b The equilibrium. Trades in the green regions are profitable for v1 and v2, while
positions in the white regions trades are not worth trading for either player. c, d The trades that improve
group welfare (darkened regions) alongside the trades that are offered by v1 and v2, respectively

Fig. 4 An integral representation of a function with two Nash equilibria. Each region is defined by one or
two lines with slopes indicated by the mi and ni . The integral of each region is indicated by the values
inside the square. Note that for clarity, these regions are not necessarily to scale. Several of these regions
are too small be represented accurately and be readable, so the drawn lines do not represent the true slopes

Corollary 3 There exist probability distributions f with multiple solutions to Eqs. (1)–
(8) and therefore have multiple Nash equilibria.

Proof We prove this with a family of examples. Let f be any joint probability distri-
bution that is positive almost everywhere whose integrals in each of the regions shown
is given by the values shown in Fig. 4.

Straightforward computations show that any such function will have at least two
equilibria defined by the mi and ni coefficients. Therefore, our Nash equilibria are
not necessarily unique. Notice that in Fig. 4, Q+

1 = Q−
1 = Q+

2 = Q−
2 = 1

2 , so this
example holds for all n. ��

The distribution shown in Fig. 4 has extremely high density variance. Some tiny
slivers of the square have a large fraction of the total utility pairs (like the triangle
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defined by n2 and m2) while other large regions have essentially no mass (like the
trapezoid bordered by n8). All the counterexample families that we have generated
seem to have this property, and we conjecture that all “reasonable” utility distributions
have a unique non-trivial equilibria, although this seems difficult to state rigorously,
let alone prove.

2.2 Group welfare

Theorem 1 has given us a way to determine which strategies are a symmetric Nash
equilibrium under any particular density function, so now we can consider the effect
such trades will have on the group as a whole. Recall that we define the payoff from
any decision for a group to be the sum of payoffs for the individuals in the group. This
allows us to compute the expected value of a trade for the whole group by extending
our proof of Theorem 1 (“Appendix A”) to account for the utilities of all members
of the group. The derivations and resulting equations are uncomplicated but tedious,
so we have placed them in “Appendix C” and simply demonstrate visually with some
examples in the main text by plotting the regions where trades have positive expected
value for the group.

Again, we first turn to the uniform distribution, where we know that the naive
equilibrium holds. Every pair of utilities is offered to trade, but only a fraction of utility
pairs have a difference between utilities that is great enough to be worth overriding
the majority decision. The darkened regions shown in Fig. 2c, d indicate utility pairs
that are beneficial for the entire group. By integrating these regions (or rather, the
intersection of these regions with the Ri regions), we compute the probability that a
trade improves group welfare. For the uniform distribution, this probability is exactly
1
9 . Furthermore, the expected value (for thewhole group) of a trade in the naive strategy
equilibrium is≈ −0.082when n = 11.While themagnitude of this value is dependent
on n (because the probability of being pivotal shrinks as n grows), the sign is not, and
a trade will have negative expected value for any group size.

For the utility distribution given inEq. (9), trades are actually slightlymore valuable.
By integrating the darkened regions of Fig. 3, we see that about 18.5% of trades have
positive expected value for the entire group, and the expected value of a random trade
is ≈ −0.054.

However, these examples do not imply that vote trading will always have a low
probability of improving welfare. Consider the equation

gα(z) =
{

−1α α+1
2 zα z < 0

−1α α+1
2 (z − 1)α z > 0

(10)

and let f (x, y) = gα(x)gα(y). An example with α = 4 is shown in Fig. 5a. As α

approaches ∞, the distribution becomes more and more skewed and the probability
of a trade being beneficial approaches 1 since most types of trades become beneficial
for the group and the few that do not become increasingly unlikely. In Fig. 5, the
probability of a beneficial trade is around 95%, and the expected value of a trade is
1.023.
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Fig. 5 The results of our vote trading analysis on a highly skewed independent distribution. a A heatmap
of the underlying distribution from Eq. (10) with α = 4. b The Nash equilibrium, in which many trades are
offered. c, d The trades that improve group welfare (darkened regions) alongside the trades that are offered
by v1 and v2, respectively. The regions of beneficial trades completely cover many of the regions in which
trades are being offered, so the vast majority of trades are beneficial for the group

This Nash equilibrium is a revealing example that shows why some utility pairs
are worth trading in either direction and others are never worth trading. In this Nash
equilibrium, the vast majority of traders are aiming to vote “no” on their preferred
issue, so a voter with two negative utilities risks almost nothing by giving away a vote,
but there are many traders giving away votes on issues with positive utility, so there
is still much to be gained by trading in either direction.

We can also use this technique on simple distributions to draw generalized conclu-
sions about the value of vote trading. For instance, consider two distributions, both
symmetric with independent utilities, but where one has mainly uninterested voters
and one with predominantly passionate voters (Fig. 6a, d, respectively). Being point
symmetric, the naive equilibrium (Fig. 2b) holds for both cases, but trades have a very
different impact on group welfare; the former has beneficial trades approximately
24.5% of the time and the expected value of a trade is only ≈ −0.033, while the latter
never has beneficial trades, and the expected value is ≈ −0.197.

This result is surprising in the context of previous research which suggests that vote
trading ismore advantageouswhen preferences are heterogeneous. The key distinction
is that these previousworks have assumed tradingwith a numeraire (Casella et al. 2012)
or in a power-sharing system (Tsakas et al. 2020), where voters who give up a vote and
lose can still gain a small degree of value or representation. Intuitively, themajoritarian
system in this model offers no such consolation prize, so trading improves welfare
only when the stakes are low enough that most voters are largely indifferent to the
outcome of the vote.

Finally, notice that the border of each darkened region, representing beneficial
trades, has the same slope as the underlying colored region, representing the trades
offered in the Nash equilibrium. In “Appendix C”, we compute this vertical shift for
each region.

In point symmetric distributions, this vertical shift is the same in all regions, which
opens up the possibility of promoting group welfare by imposing a cost on vote
trading.Consider the constant distribution in Fig. 2,where each region of groupwelfare
improving trades is shifted up (or down) by 2

3 . In this system, many trades that do not
improve welfare could bemade. But if every vote trader had to pay a cost of 2

3 (perhaps
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Fig. 6 The difference in benefit of trades in two symmetric distributions. Both distributions have the form

f (x, y) = g(x)g(y) where g is a symmetric 1D distribution. a–c Correspond to g(z) =
{
1 + z z < 0

1 − z z ≥ 0

while (d–f) correspond to g(z) =
{

−z z < 0

z z ≥ 0
. a, c The distribution heatmaps. A group with many low

utilities like (a) benefits from vote trading much more than a group with many extreme utilities like (d)

from some external numeraire), then only trades in the darkened region will be offered
and all trades will be welfare improving.

Of course, if the utility distribution is not point symmetric (see Figs. 3 and 5), then
different regions have different vertical shifts and a constant cost to trading would not
have the same effect. In extreme cases, it would even be necessary to pay voters with
specific utilities to trade votes.

3 Vote trading in real populations

These toy examples are good for generalized principles, but still a step away from
determining if vote trading improves group welfare in the real world. It is very difficult
to study vote trading empirically. In the political sphere, most lawmakers are unwilling
to admit to voting against their preferences on an issue but the common suspicion is
that vote trading is prevalent throughout legislatures (Stratmann 1995; Aksoy 2012;
Cohen and Malloy 2014). In this final section, we form a hypothetical committee
made up of real voters with real preferences on real issues and examine the effect vote
trading would have on this group.
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Fig. 7 Examining vote trading equilibria on real joint utility distributions. We examined the 45 joint dis-
tributions from all possible pairings of the 10 issues on which we have real voter preferences. On the left,
we see a histogram showing the distribution of θi values. In the middle, we see the distribution for the
probability that a trade is beneficial for the group, and on the right, we see the distribution for the expected
values of a trade on each issue pair

The American National Election Survey (Studies 2021) regularly polls voters on a
wide range of issues. On some issues, they ask for voters’ preferences and the intensity
of preferences, so this data allows us to estimate the joint probability distribution of
American voter utilities on pairs of issues. The 10 issues where preference intensity
was measured involved overall government regulation, government action on income
inequality, vaccine requirements in schools, regulation on greenhouse gas emissions,
background checks for gun purchases, banning assault rifles, government action on
the opioid epidemic, free trade agreements, a universal basic income, and govern-
ment spending on healthcare. These issues are highly correlated. On all issues, voters
expressed their preferences on a scale from 1 (strongly oppose) to 7 (strongly support).
Using this discrete data, we apply Gaussian Kernel Density Estimation (Wȩglarczyk
2018) to get a continuous approximation for the joint probability distribution. Many
issues are strongly skewed in one direction or the other, and almost all of the issue
pairs are highly correlated.

With this density function, we can find the Nash equilibrium and determine which
trades are valuable. In Fig. 7, we can see the results of this analysis across all pairs of
issues. First, notice that many θi values are close to π

4 ≈ 0.785. This suggests that the
naive strategy may be a good heuristic for determining rational behavior in realistic
scenarios.

We also see that a trade is beneficial to the group about one third of the time, and
that the expected value of a random trade is −0.08. Thus, two voters trading votes on
real issues is probably harming group welfare by subverting majority rule, rather than
benefiting the group by more accurately expressing voter preferences.

4 Group-wide trading

Until now, voters assume that their trade is the only one that will be made, and that
the other n − 2 voters will vote sincerely. Of course, in most scenarios, all voters will
have equal opportunity to trade votes, so in this section we extend our model to allow
all voters the chance to trade.

Like the single-trade model, we first assign all voters utilities on t1 and t2. Then,
voters are randomly paired together and allowed to trade like before. Because n is
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odd, one voter will be left out but the rest of the voters must take into account the
other n−3

2 pairs of voters that may be trading. Unfortunately, this makes finding an
exact closed-form solution difficult, because now voting behavior is dependent across
individuals and issues, so we introduce an approximation of these dependent variables
as independent variables. While imperfect, this allows us to see how vote trading
changes when all voters have the opportunity to trade with a random partner.

In “Appendix A”, we computed the probability of the trade being the swing vote as
(n−2
n−3
2

)
(Q−

1 )
n−1
2 (Q+

1 )
n−3
2 . When allowing all pairs of voters to trade, we replace these

Q terms with new quantities that take into account the probability that the vote was
traded away. To see the details of this approximation, see “Appendix C”.

“AppendixC” also includes recreations of all previous results under this newmodel.
Surprisingly, we do not see a large change in voter behavior when all voters are allowed
to trade simultaneously. Many of the results are changed only slightly, since it is
fruitless to try to take other trades into account unless you can predict the direction of
those trades. However, we do see a change in the group welfare implications of trades
for the distribution in Fig. 5, an example that was engineered specifically to encourage
trades in one direction. In the original model, vote trading was very valuable because it
made it more likely that the group would choose the high preference intensity options.
Once all voters are allowed to trade, however, the probability of any one trade being
influential drops, and the welfare gains of trading also decrease.

5 Discussion

This model of vote tradingmakes several assumptions of varying strength. Voters have
incomplete information about the preferences of their potential trading partners, but
complete information about the preferences of the entire group. For simplicity, we
restrict voters to one-for-one vote trades, ignoring the possibilities of trading multiple
unimportant issues for one supercritical issue ormore than twovoters gathering to swap
amultitude of issues between them all. The primarymodel also assumesmyopic trades
where the group votes immediately after a single trade is made, removing the need
to consider the impact of other trades on the distribution of utilities. When we loosen
this assumption, our approximation reveals changes in the trades being offered when a
distribution is only conducive to trades in one direction. All these simplifications and
approximations are avenues for future investigation. For example, equipping voters
with partial information about the preferences of their partners could illuminate the
middle ground between previous complete information models and the incomplete
information model presented here.

A crucial component of this analysis is the probability a trade swings the pivotal
vote. On balanced issues, where Q+ = Q− = 1

2 , the probability of pivotality is about
6% when n = 11. Of course, as n grows, this probability approaches zero, but even if
the expected value of a trade goes to zero, it is always either positive or negative, so
the set of rational trades is unchanged. On unbalanced issues, however, the probability
of being pivotal can rapidly go to zero, many trades can become unprofitable, and
almost no trades are offered or made. This confirms the natural intuition that if an

123



M. I. Jones

issue is going to be approved or rejected overwhelmingly, there is no sense trading
on that issue, because one additional vote could not possibly overcome the will of the
majority.

Despite these limitations, this paper makes several new contributions to our under-
standing of vote trading. First, it highlights that thewelfare implications of vote trading
are dependent on the underlying utility distributions. The question of if vote trading
improves group welfare does not have a simple yes/no answer. However, for many rea-
sonable utility distributions, including distributions drawn from real data, vote trading
adds value for the entire group infrequently, at best. One ray of hope here is that the
vote that are beneficial for the whole group are also the most beneficial for the voters
themselves, so if voters restrain themselves to only trading on issues where they stand
to gain the most utility, the value for the group could also improve.

Second, the toy model presented here gives real insights into the dynamics of
vote trading. We see the role of symmetry in the Nash equilibria and we get the
counterintuitive result that some utility pairs can be traded in either direction while
others cannot be traded for positive value at all. Although these equilibria are not
unique in general, our investigation suggests that in most realistic scenarios, rational
vote traders should converge to a single Nash equilibrium.

Finally, this paper outlines a probabilistic method for thinking about vote trading,
and we believe this could open up new avenues in the study of vote trading.
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Appendix A Proof of Theorem 1

Suppose we have two issues, t1 and t2, and two players. The t1 voter will be giving
away their vote on t2 in exchange for an additional vote on t1 and the t2 voter will be
giving away their vote on t1 in exchange for an additional vote on t2.
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Utilities on the two issues are assigned according to a joint probability distribution
f (x, y) : [−1, 1]2 → R where x is the utility on t1 and y is the utility on t2. By
integrating this function, we can determine the probability a random voter supports or
opposes t1 and t2:

Prob(t1 utility > 0) = Q+
1 =

∫ 1

0

∫ 1

−1
f (x, y)dydx

Prob(t1 utility < 0) = Q−
1 =

∫ 0

−1

∫ 1

−1
f (x, y)dydx

Prob(t2 utility > 0) = Q+
2 =

∫ 1

0

∫ 1

−1
f (x, y)dxdy

Prob(t2 utility < 0) = Q−
2 =

∫ 0

−1

∫ 1

−1
f (x, y)dxdy

We assume all four quantities are nonzero; otherwise, trading fails as certain indi-
viduals have no incentive to trade.To compute the probability that a vote trader supports
or opposes an issue, we integrate over these regions and normalize as needed.

I∗ =
∫ ∫

R∗
f (x, y)dxdy

IS1 = I1 + I2 + I3 + I4

IS2 = I5 + I6 + I7 + I8

With this, we can write down all the necessary probabilities:

P(u1 > 0) = I1 + I4
IS1

P(u1 < 0) = I2 + I3
IS1

P(u2 > 0) = I1 + I2
IS1

P(u2 < 0) = I3 + I4
IS1

P(u3 > 0) = I5 + I6
IS2

P(u3 < 0) = I7 + I8
IS2

P(u4 > 0) = I5 + I8
IS2
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P(u4 < 0) = I6 + I7
IS2

Suppose a trade is about to occur. Let u1 and u2 be the utilities for the t1 voter on
t1 and t2, respectively. Let u4 and u3 be the respective utilities of the t2 voter. There
are four events that are relevant to the expected value for the t1 voter:

A: The t1 and t2 voters have opposite preferences on t1
B: The t1 and t2 voters have opposite preferences on t2
C : The t2 voter is the swing vote on t1
D: The t1 voter is the swing vote on t2
Either A and C need to happen, in which case value 2|u1| is gained, or B and D

need to happen, in which case 2|u2| value is lost. Therefore, the expected value can
be expressed as follows:

E(u1, u2) = 2|u1|P(A)P(C |A) − 2|u2|P(B)P(D|B) (A1)

As a note, expectation is a linear operator, so Eq. (A1) holds even if voter utilities
are highly correlated. We go through all the details here when u1 > 0 and u2 > 0,
which determines the optimal value of θ1. The other seven cases are similar.

First, consider what happens to the vote on t1. Nothing happens unless the t2
voter has negative utility on t1, i.e. u4 < 0. By above, this occurs with probabil-
ity I6+I7

IS2
. Conditional on this being true, the vote only changes if the t2 voter was the

swing vote, which means that n−1
2 of the non-trading voters have negative utility on

t1 and the remaining n−3
2 voters have positive utility. This happens with probability

(n−2
n−3
2

)
(Q−

1 )
n−1
2 (Q+

1 )
n−3
2 . Wemultiply these quantities by 2u1 to get the expected value

for the t1 voter of gaining an extra vote on t1. We repeat the process to compute the
expected value of giving up a vote on t2 to get

E(value of trade)

= 2u1
I6 + I7
IS2

(
n − 2
n−3
2

)

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

− 2u2
I7 + I8
IS2

(
n − 2
n−3
2

)

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

= 2

IS2

(
n − 2
n−3
2

) (
u1(I6 + I7)(Q

−
1 )

n−1
2 (Q+

1 )
n−3
2 − u2(I7 + I8)(Q

−
2 )

n−3
2 (Q+

2 )
n−1
2

)

By setting the last line of this equality to zero, we find the utility pairs (u1, u2)
for which the t1 voter is indifferent between trading and not trading. We see that this
defines a line with slope u2

u1
. Any utility pair with a higher u1 or a lower u2 will have

positive utility, so a rational voting strategy will indeed be determined by regions like

those shown in Fig. 1. Solving for θ1 = arctan
(∣
∣
∣ u2u1

∣
∣
∣
)
, we find the value for θ1 that

controls the shape of R1:
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θ1 = arctan

(
I6 + I7
I7 + I8

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

)

. (A2)

To ensure that this iswell-defined, if I7+I8 = 0, then θ1 = π
2 = limx→∞ arctan(x).

We leave this function undefined when the numerator and denominator are both zero;
in this case, no tradewill happen and so there is no change in value, positive or negative.

Repeat this process for the other seven θi values. Solutions to this set of equations
represent a Nash equilibrium, since they are a best response to themselves. In fact,
it is a strict Nash equilibrium. Any deviation from this strategy, when played against
this strategy, either offers trades with negative expected value or refuses trades with
positive expected value; in both cases, the deviant strategy has a lower expected payoff.

Appendix B Proof of Corollary 1

Let (θ1, . . . , θ8) be a solution to Eqs. (1)–(8). First, we show that if this point is not
exactly the origin, then it must not be located near the origin.

Lemma 1 Let Qmin = min

{
(Q−

1 )
n−1
2 (Q+

1 )
n−3
2

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

, . . . ,
(Q−

2 )
n−3
2 (Q+

2 )
n−1
2

(Q−
1 )

n−3
2 (Q+

1 )
n−1
2

}

and θmin =
arctan(Qmin).

If θi > 0 for any i , then all θi > 0 for all i .
Furthermore, if any θi > 0, then θ1 + θ3 > θmin, θ2 + θ4 > θmin, θ5 + θ7 > θmin,

and θ6 + θ8 > θmin.

Proof Suppose without loss of generality that θ1 ≥ 0.
Using Eqs. (1)–(8), θ1 > 0 	⇒ θ7, θ8 > 0 	⇒ θ2, θ3, θ4 > 0 	⇒ θ5, θ6 > 0.
By Eq. (7), either I1+I2

I1+I4
≥ 1 and therefore θ7 ≥ θmin , or I4 > I2, in which case

θ5 > θmin .
Likewise, by Eq.(8), θ8 ≥ θmin or I3 > I1 and therefore θ6 > θmin . With the same

method, we get that θ1 ≥ θmin or θ3 > θmin and that θ2 ≥ θmin or θ4 > θmin . ��
Note that this implies that if any θi > 0, then Eqs. (1)–(8) are all well-defined, since

we never have 0
0 .

For each (θ1, . . . , θ8), there is a best response, i.e. a set of trades that have positive
value and a set of trades that have negative value. Equations (1)–(8) tell us how to
define this function BR : [0, π

2 ]8 → [0, π
2 ]8.

(θ1, . . . , θ8) �→
⎛

⎜
⎝arctan

⎛

⎜
⎝

I6(θ6) + I7(θ7)

I7(θ7) + I8(θ8)

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

⎞

⎟
⎠ , . . . , arctan

⎛

⎜
⎝

I1(θ1) + I2(θ2)

I2(θ2) + I3(θ3)

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

(Q−
1 )

n−3
2 (Q+

1 )
n−1
2

⎞

⎟
⎠

⎞

⎟
⎠

(B3)
Let R be the subset of [0, π

2 ]8 where θ1+θ3 ≥ θmin , θ2+θ4 ≥ θmin , θ5+θ7 ≥ θmin ,
and θ6 + θ8 ≥ θmin . R is clearly convex and compact. By the above lemma, BR maps
R to R, is well-defined, and is continuous. Therefore, we can apply Brouwer’s Fixed
Point Theorem and are done. We have bounded away from the origin, so we know that
the fixed point, which is a Nash equilibrium, is not the trivial Nash equilibrium.
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Appendix C Group welfare derivations

Here, we derive bounds on the trades that provide benefits (in expectation) for the
entire group, not just the vote traders. We use a modification of Eq. (A1) that includes
the utility of all members of the group.

E(u1, u2) = 2E(value for all voters)P(A)P(C |A) − 2E(value for all voters)P(B)P(D|B) (C4)

We can write down these terms explicitly for u1 > 0 and u2 > 0. The first term in
the parentheses is the vote trader, the second term is the trading partner, the third term
is the n−1

2 voters that don’t agree with the trader, and the fourth term is the n−3
2 voters

that do agree.

E(u1, u2) = I6 + I7
IS2

(
n − 2
n−3
2

)

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2

(

2u1 + 2
1

I6 + I7

∫∫

R6∪R7
x f (x, y)dxdy

+ 2
n − 1

2

1

Q−
1

∫ 0

−1

∫ 1

−1
x f (x, y)dydx + 2

n − 3

2

1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

)

+ I7 + I8
IS2

(
n − 2
n−3
2

)

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2 · (−1)·

(

2u2 + 2
1

I7 + I8

∫∫

R7∪R8
y f (x, y)dxdy

+ 2
n − 3

2

1

Q−
2

∫ 0

−1

∫ 1

−1
y f (x, y)dxdy + 2

n − 1

2

1

Q+
2

∫ 1

0

∫ 1

−1
y f (x, y)dxdy

)

Like before, we can set this expression equal to zero and solve to find the trades
with expected value zero from the trade. After removing some common terms, we get

Quadrant 1:
a1
c1

u1 + a1b1
c1

− d1 ≥ u2 (C5)

where
a1 = (I6 + I7)(Q−

1 )
n−1
2 (Q+

1 )
n−3
2

b1 = 1

I6 + I7

∫∫

R6∪R7
x f (x, y)dxdy + n − 1

2

1

Q−
1

∫ 0

−1

∫ 1

−1
x f (x, y)dydx + n − 3

2

1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

c1 = (I7 + I8)(Q−
2 )

n−3
2 (Q+

2 )
n−1
2

d1 = 1

I7 + I8

∫∫

R7∪R8
y f (x, y) + n − 3

2

1

Q−
2

∫ 0

−1

∫ 1

−1
y f (x, y)dxdy + n − 1

2

1

Q+
2

∫ 1

0

∫ 1

−1
y f (x, y)dxdy

Notice that this line is parallel to the boundary of R1, just shifted by a factor of
a1b1
c1

− d1. If this term is sufficiently negative, there may be no trades with u1 > 0 and
u2 > 0 that have positive value for the group.
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The exact same process can be repeated for all eight types of trades. We give the
final expressions now.

Quadrant 2: − a2
c2

u1 − a2b2
c2

− d2 ≥ u2 (C6)

Quadrant 3:
a3
c3

u1 + a3b3
c3

− d3 ≤ u2 (C7)

Quadrant 4: − a4
c4

u1 − a4b4
c4

− d4 ≤ u2 (C8)

Quadrant 5: u3 ≥ c5
a5

u4 + c5d5
a5

− b5 (C9)

Quadrant 6: u3 ≥ − c6
a6

u4 − c6d6
a6

− b6 (C10)

Quadrant 7: u3 ≤ c7
a7

u4 + c7d7
a7

− b7 (C11)

Quadrant 8: u3 ≤ − c8
a8

u4 − c8d8
a8

− b8 (C12)

The coefficients can be calculated as

a2 = (I5 + I8)(Q
−
1 )

n−3
2 (Q+

1 )
n−1
2

b2 = 1

I5 + I8

∫∫

R5∪R8

x f (x, y)dxdy + n − 3

2

1

Q−
1

∫ 0

−1

∫ 1

−1
x f (x, y)dydx

+n − 1

2

1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

c2 = c1
d2 = d1
a3 = a2
b3 = b2

c3 = (I5 + I6)(Q
−
2 )

n−1
2 (Q+

2 )
n−3
2

d3 = 1

I5 + I6

∫∫

R5∪R6

y f (x, y)dxdy + n − 1

2

1

Q−
2

∫ 0

−1

∫ 1

−1
y f (x, y)dxdy

+n − 3

2

1

Q+
2

∫ 1

0

∫ 1

−1
y f (x, y)dxdy

a4 = a1
b4 = b1
c4 = c3
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d4 = c3

a5 = (I3 + I4)(Q
−
2 )

n−1
2 (Q+

2 )
n−3
2

b5 = 1

I3 + I4

∫∫

R3∪R4

y f (x, y)dxdy + n − 1

2

1

Q−
2

∫ 0

−1

∫ 1

−1
y f (x, y)dxdy

+n − 3

2

1

Q+
2

∫ 1

0

∫ 1

−1
y f (x, y)dxdy

c5 = (I2 + I3)(Q
−
1 )

n−3
2 (Q+

1 )
n−1
2

d5 = 1

I2 + I3

∫∫

R2∪R3

x f (x, y)dxdy + n − 3

2

1

Q−
1

∫ 0

−1

∫ 1

−1
x f (x, y)dydx

+n − 1

2

1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

a6 = a5
b6 = b5

c6 = (I1 + I4)(Q
−
1 )

n−1
2 (q+

1 )
n−3
2

d6 = 1

I1 + I4

∫∫

R1∪R4

x f (x, y)dxdy + n − 1

2

1

Q−
1

∫ 0

−1

∫ 1

−1
x f x, y)dydx

+n − 3

2

1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

a7 = (I1 + I2)(Q
−
2 )

n−3
2 (Q+

2 )
n−1
2

b7 = 1

I1 + I2

∫∫

R1∪R2

y f (x, y)dxdy + n − 3

2

1

Q−
2

∫ 0

−1

∫ 1

−1
y f (x, y)dxdy

+n − 1

2

1

Q+
2

∫ 1

0

∫ 1

−1
y f (x, y)dxdy

c7 = c6
d7 = d6
a8 = a7
b8 = b7
c8 = c5
d8 = d5

This can be used to compute the probability that a random trade is beneficial for
the entire group. We can use a similar approach to compute the expected value of a
random trade in equilibrium for the group. There are four possible outcomes that could
change the value for the group: issue t1 passes because of the trade, t1 fails because
of the trade, t2 passes because of the trade, and t2 fails because of the trade. Consider
the first event.

This occurs if t1 fails by one vote among the other n − 2 voters and the t1 voter
has positive utility on t1 and the t2 voter has negative utility on t1. The product of the
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Fig. 8 The Nash equilibrium and welfare-improving trades when all voters are paired up and allowed to
trade for the distribution in (a). This figure can be compared to Fig. 3 to see the small changes that happen
when multiple trades are permitted

Fig. 9 The Nash equilibrium and welfare-improving trades when all voters are paired up and allowed to
trade for the distribution in (a). This figure can be compared to Fig. 5 to see that when multiple trades are
permitted, some trades located in the first quadrant become detrimental to group welfare

probabilities that each of these occurs is

(
n − 2
n−3
2

)

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2 · I1 + I4

IS1
· I6 + I7

IS2
(C13)

If this happens, the expected value for the group is

2

(
1

I1 + I4

∫∫

R1∪R2

x f (x, y)dydx

+ 1

I6 + I7

∫∫

R6∪R7

x f (x, y)dydx

+ (
n − 1

2
)
1

Q−
1

∫ 0

−1

∫ 1

−1
x f (x, y)dydx

+ (
n − 3

2
)
1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

)

(C14)

where the four terms in parentheses are the expected change in utility for the t1 voter,
the t2 voter, the n−1

2 other voters who oppose t1, and the n−3
2 other voters who support

t1, respectively.
Finally, wemultiply Eqs. (C13) and (C14), repeat for the other three possible events

that could change group welfare, and add them all together to get the final expected
value for a random trade:
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E(Value of trade for entire group)

= 2

((
n − 2
n−3
2

)

(Q−
1 )

n−1
2 (Q+

1 )
n−3
2 · I1 + I4

IS1
· I6 + I7

IS2

)

·
(

1

I1 + I4

∫∫

R1∪R2

x f (x, y)dydx + 1

I6 + I7

∫∫

R6∪R7

x f (x, y)dydx

+
(
n − 1

2

)
1

Q−
1

∫ 0

−1

∫ 1

−1
x f (x, y)dydx +

(
n − 3

2

)
1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

)

− 2

((
n − 2
n−3
2

)

(Q−
1 )

n−3
2 (Q+

1 )
n−1
2 · I2 + I3

IS1
· I5 + I8

IS2

)

·
(

1

I2 + I3

∫∫

R2∪R3

x f (x, y)dydx + 1

I5 + I8

∫∫

R5∪R8

x f (x, y)dydx

+
(
n − 3

2

)
1

Q−
1

∫ 0

−1

∫ 1

−1
x f (x, y)dydx +

(
n − 1

2

)
1

Q+
1

∫ 1

0

∫ 1

−1
x f (x, y)dydx

)

+ 2

((
n − 2
n−3
2

)

(Q−
2 )

n−1
2 (Q+

2 )
n−3
2 · I3 + I4

IS1
· I5 + I6

IS2

)

·
(

1

I3 + I4

∫∫

R3∪R4

y f (x, y)dxdy + 1

I5 + I6

∫∫

R5∪R6

y f (x, y)dxdy

+
(
n − 1

2

)
1

Q−
2

∫ 0

−1

∫ 1

−1
y f (x, y)dxdy +

(
n − 3

2

)
1

Q+
2

∫ 1

0

∫ 1

−1
y f (x, y)dxdy

)

− 2

((
n − 2
n−3
2

)

(Q−
2 )

n−3
2 (Q+

2 )
n−1
2 · I1 + I2

IS1
· I7 + I8

IS2

)

·
(

1

I1 + I2

∫∫

R1∪R2

y f (x, y)dxdy + 1

I7 + I8

∫∫

R7∪R8

y f (x, y)dxdy

+
(
n − 3

2

)
1

Q−
2

∫ 0

−1

∫ 1

−1
y f (x, y)dxdy +

(
n − 1

2

)
1

Q+
2

∫ 1

0

∫ 1

−1
y f (x, y)dxdy

)

(C15)

Appendix D Group-wide trading details

We will need to know the probability that a voter is willing to trade in either direction,
so we define the following quantities:

J1 =
∫∫

R1∩R5

f (x, y)dxdy (D16)

J2 =
∫∫

R2∩R6

f (x, y)dxdy (D17)
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J3 =
∫∫

R3∩R7

f (x, y)dxdy (D18)

J4 =
∫∫

R4∩R8

f (x, y)dxdy (D19)

A voter v who is deciding what trade to offer needs to know the probability that
the trade will change the outcome of the vote. Consider a random other voter w in
the population that is not paired with v. First, let us determine the probability that w

ultimately casts a vote in support of t1.
w initially supports t1 with probability Q+

1 . With probability n−3
n−2 ,w has the oppor-

tunity to trade.
There is also a chance that w gives away their vote to someone that opposes t1.

This happens if w’s utilities fall in R5 or R8 and w’s trading partner is in R2 or R3,
which happens with probability (I5 + I8)(I2 + I3) which we subtract from the initial
probability. However, ifw and their partner are both willing to trade in either direction,
then w only gives up their vote half the time, so the probability that w has a positive
utility on t1 but trades it away is (I5 + I8)(I2 + I3) − 1

2 (J1 + J4)(J2 + J3).
Similarly, w could also vote for t1 if they initially oppose the issue but give away

their vote to someone who supports it. Therefore, we must add (I6 + I7)(I1 + I4) −
1
2 (J2 + J3)(J1 + J4).

When we add all three of these terms together, we have the probability that voter
w votes in favor of t1:

Q+
1 = Q+

1 + n − 3

n − 2

(

(I6 + I7)(I1 + I4) − 1

2
(J2 + J3)(J1 + J4) − (I5 + I8)(I2 + I3) + 1

2
(J1 + J4)(J2 + J3)

)

The J terms cancel out, and we are left with

Q+
1 = Q+

1 + n − 3

n − 2

(

(I6 + I7)(I1 + I4) − (I5 + I8)(I2 + I3)

)

. (D20)

A similar process gives the other necessary probabilities.

Q−
1 = Q−

1 + n − 3

n − 2

(

(I5 + I8)(I2 + I3) − (I6 + I7)(I1 + I4)

)

(D21)

Q+
2 = Q+

2 + n − 3

n − 2

(

(I3 + I4)(I5 + I6) − (I1 + I2)(I7 + I8)

)

(D22)

Q−
2 = Q−

2 + n − 3

n − 2

(

(I1 + I2)(I7 + I8) − (I3 + I4)(I5 + I6)

)

(D23)

Now, when computing the Nash equilibrium using Eqs. (1)–(8), we replace the Q
termswithQ terms fromEqs. (D20)–(D23) to approximate the probability of being the
pivotal vote after all other voter pairs have traded.We can make this same replacement
in the ai and ci terms when computing group welfare implications. Note that we do
not replace the Q terms in the bi and di equations, since those are computing welfare,
not the probability of being a pivotal vote.
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When f is point-symmetric around the origin, it still has the naiveNash equilibrium.
All Ii s are equal, and almost all terms in Eqs. (D20)–(D23) cancel out. There is no
change to the equilibrium between the myopic model and the model that allows all
voters to trade votes.

We end by recreating Figs. 3 and 5 with the new equilibria found when all voters
are paired up and allowed to trade. The changes are modest, and most pronounced
when the distribution f is designed to promote trades in one direction.
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